S21. The Interaction Lagrangian and the S-Matrix. (Bogoliubou \& Shirkov).
21.1 Expansion of the S-Matrix in Powers of the Interaction

Perturbative treatment: We propose an expansion in powers of $g(x)$:

$$
S(g)=1+\sum_{n \geqslant 1} \frac{1}{n!} \int S_{n}\left(x_{1}, \ldots, x_{n}\right) g\left(x_{1}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n} .
$$

- Sn are "polylocal operators" $A\left(x_{1}, \ldots, x_{n}\right)=\sum K_{\ldots \alpha . .}\left(x_{1}, \ldots, x_{n}\right): \ldots u_{\alpha}\left(x_{j}\right) \ldots$:

In the case of fermionic fields, these \uparrow field operators. should appear in pairs.

$$
\Rightarrow\left[A_{1}\left(\left\{x_{i}\right\}\right), A_{2}\left(\left\{y_{j}\right\}\right)\right]=0 \quad \text { if } \quad\left\{x_{i}\right\} \sim\left\{y_{j}\right\} \text {. }
$$

- If $g \in S\left(\mathbb{R}^{4}\right)$, then we have "better chances" of convergence for the individual terms (but the whole series might still be divergent).
- It is clear from its definition that $S_{n}\left(x_{1}, \ldots, x_{n}\right)$ must be symmetric in its arguments: $S_{n}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=S_{n}\left(x_{1}, \ldots, x_{n}\right) \quad \forall \sigma \in$ Permutation group of n elements.
\$21.2 Conditions of Covariance, Unitarity and Causality for Sn.
- Covariance: $\quad S(\Lambda \cdot g)=U(\Lambda) S(g) U(\Lambda)^{+}$

$$
\begin{aligned}
& \Rightarrow \quad \int u(\wedge) S_{n}\left(x_{1}, \ldots, x_{n}\right) u(\wedge)^{+} g\left(x_{n}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n}=\int S_{n}\left(x_{1}, \ldots, x_{n}\right) g\left(\Lambda^{-1} x\right) \cdots g\left(\Lambda^{-1} x_{n}\right) d x_{1} \cdots d x_{n} \\
& \Rightarrow \quad u(\Lambda) S_{n}\left(x_{1}, \ldots, x_{n}\right) u(\wedge)^{+}=S_{n}\left(\wedge x_{1}, \ldots, \wedge x_{n}\right) .
\end{aligned}
$$

- Unitarity: $S(g) S(g)^{+}=\mathbb{1} \Rightarrow\left(t_{a} k i n g ~ g t_{0}\right.$ be red)

$$
\left(\mathbb{1}+\sum_{k \geqslant 1} \frac{1}{k!} \int S_{k}\left(x_{1}, \ldots, x_{k}\right) g\left(x_{1}\right) \cdots g\left(x_{k}\right) d x_{1} \cdots d x_{k}\right)\left(\mathbb{1}+\sum_{m \geqslant 1} \frac{1}{m!} \int S_{m}^{+}\left(x_{1}, \ldots, x_{m}\right) g\left(x_{1}\right) \cdots g\left(x_{m}\right) d x_{1} \cdots d x_{m}\right)=\mathbb{1}
$$

$$
\Rightarrow
$$

\Rightarrow

$$
\begin{equation*}
\sum_{0 \leqslant k \leqslant n} \frac{1}{k!(n-k)!} \int S_{k}\left(x_{1}, \ldots x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right) g\left(x_{1}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n}=0 \tag{21.7}
\end{equation*}
$$

$$
\text { (for } n>0)
$$

Since g is arbitrary, we would like to conclude from (21.7) that

$$
\begin{equation*}
\sum_{0 \leqslant k \leqslant n} \frac{1}{k!(n-k)!} S_{k}\left(x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right) \tag{21.8}
\end{equation*}
$$

is equal to zero. But this is not true, because the product $S_{u c}\left(\left\{x_{i}\right) S_{n-k}^{+}\left(\left\{x^{\prime}\right\}\right)\right.$ is not symmetric in its argument.
Let discuss this issue in some detail.
If V is a vector space and $\varphi \in V^{*}$ a dual vector, then it is dear that $\varphi(v)=0 \quad \forall v \in V$ implies $\quad v=0$.
For $g \in S(\mathbb{R})$, we may consider a map of the form

$$
\begin{aligned}
J(\mathbb{R}) & \longrightarrow \mathbb{C} \\
g & \longmapsto\left\langle\ell_{F}, g\right\rangle:=\int_{\mathbb{R}} F(x) g(x) d x .
\end{aligned}
$$

If $\left\langle l_{F}, g\right\rangle=0 \forall g=0$, we would like to conclude that $F=0$. But here we must be careful, as F could be a locally integrable function with support on a set of Lebesgue measure zero. In that case we will only be able to claim that $[F]=0, \quad[F] \in L_{l_{\alpha}}^{1}(\mathbb{R})$.

Leaving aside that technical point, let assume that $\int F(x) g(x) d x=0$ for

$$
\begin{aligned}
& \sum_{k, m \geqslant 0} \frac{1}{k!m!} \int S_{k}\left(x_{1}, \ldots, x_{k}\right) S_{m}^{+}\left(x_{k+1}, \ldots, x_{k+m}\right) g\left(x_{1}\right) \cdots g\left(x_{k}\right) \cdots g\left(x_{k+m}\right) d x_{1} \cdots d x_{k+m}=\mathbb{1} \\
& \downarrow \text { Change of variables: }(k, m) \rightarrow(k, n), n=k+m \text {. } \\
& \left(S_{0}=\mathbb{1}\right)
\end{aligned}
$$

"any" function g, where we will also consider $\delta_{a}(x)$ as one possible choice for 9. In that case we have $0=\int_{\mathbb{R}} F(x) \delta_{a}(x) d x=F(a)$. Of course this is just a heuristic argument, but we are fine with it.
Now suppose we are given a function $F(x, y)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} F(x, y) \varphi(x, y) d x d y=0 \quad \text { " } \forall \varphi \text { " } \tag{*}
\end{equation*}
$$

The same argument leads to the conclusion that $F=0$.
But what if, instead of (*) above, what we have is

$$
\int_{\mathbb{R}^{2}} F(x, y) g(x) g(y) d x d y=0 \quad \forall g ?
$$

We could think of approximating functions $\varphi(x, y)$ as "sums" of products of the form $g_{1}(x) g_{2}(x)$, with g_{1} and g_{2} not necesavilly equal.
Now, let us assume that F is symmetric, $F(x, y)=F(y, x)$. In that case, we can put $g=g_{1}+g_{2}$ and write:

$$
\begin{aligned}
& 0= \int F(x, y) g(x) g(y) d x d y=\int F(x, y)\left(g_{1}(x)+g_{2}(x)\right)\left(g_{1}(y)+g_{2}(y)\right) d x d y \\
& \text { By hypothesis }=\int F(x, y) g_{2}(x) g_{1}(y) d x d y+\int F(x, y)\left(g_{1}(x) g_{2}(y)+g_{2}(x) g_{1}(y)\right) d x d y \\
&+\int F(x, y) g_{2}(x) g_{2}(y) d x d y
\end{aligned}
$$

If $F(x, y)=F(y, x)$, we then obtain

$$
\int F(x, y) g_{1}(x) g_{2}(y) d x d y=0
$$

from which we can now obtain $F=0$.
The idea, then, is to "symmetrize" (21.7). Let us consider a few simple cases:

For $n=2$, (21.7) reads as follows:

$$
\begin{aligned}
& \sum_{0 \leqslant k \leqslant 2} \frac{1}{k!(n-k)!} \int S_{k}\left(x_{1}, \ldots, x_{k}\right) S_{2-k}^{+}\left(x_{k+1}, x_{2}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}= \\
& =\int\left(\frac{1}{2!} S_{0} S_{2}^{+}\left(x_{1}, x_{2}\right)+S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)+S_{2}\left(x_{1}, x_{2}\right) \frac{S_{0}}{2!}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2} \\
& =\int\left(\frac{1}{2!} S_{2}^{+}\left(x_{1}, x_{2}\right)+S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)+\frac{1}{2!} S_{2}\left(x_{1}, x_{2}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2} \stackrel{!}{=} 0
\end{aligned}
$$

\rangle Writing

$$
\begin{aligned}
& \int S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}=\frac{1}{2} \int S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)\left(g\left(x_{1}\right) g\left(x_{2}\right)+g\left(x_{2}\right) g\left(x_{1}\right)\right) d x_{1} d x_{2} \\
= & \frac{1}{2!} \int\left(S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)+S_{1}\left(x_{2}\right) S_{1}^{+}\left(x_{1}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

Defining a "symmetrization" operator $P\left(\frac{x_{1}}{x_{2}}\right)$ as follows,

$$
P\left(\frac{x_{1}}{x_{2}}\right) S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)=S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)+S_{1}\left(x_{2}\right) S_{1}^{+}\left(x_{1}\right)
$$

or more generally $P\left(\frac{x}{y}\right) A(x) B(y)=A(x) B(y)+B(y) A(x)$,
we obtain

$$
\begin{aligned}
& \text { 2! } \int\left(\frac{1}{2!} S_{2}^{+}\left(x_{1}, x_{2}\right)+S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)+\frac{1}{2!} S_{2}\left(x_{1}, x_{2}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}= \\
& =\int\left(\frac{1}{2!} 2!S_{2}^{+}\left(x_{1}, x_{2}\right)+P\left(\frac{x_{1}}{x_{2}}\right) S_{1}\left(x_{1}\right) S_{1}^{+}\left(x_{2}\right)+\frac{1}{2!} 2!S_{2}\left(x_{1}, x_{2}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

\longrightarrow The expression in parentheses is now totally symmetric, and therefore must vanish

$$
\Rightarrow \quad S_{2}(x, y)+S_{2}^{+}(x, y)+S_{1}(x) S_{1}^{+}(y)+S_{1}(y) S_{1}^{+}(x)=0 .
$$

Let us now consider the next case, $n=3$. Eq. (21.7) now reads:

$$
\int\left(\frac{1}{3!} S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+\frac{1}{2!} S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+\frac{1}{2!} S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)+\frac{1}{3!} S_{3}\left(x_{1}, x_{2}, x_{3}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3}
$$

Now, for an expression of the form $A(x) B(y, z)$, we have:

$$
\begin{aligned}
& 3 \int A(x) B(y, z) g(x) g(y) g(z) d x d y d z= \\
& =\int A(x) B(y, z)(g(x) g(y) g(z)+g(y) g(x) g(z)+g(z) g(x) g(y)) d x d y d z \\
& =\int(A(x) B(y, z)+A(y) B(x, z)+A(z) B(x, y)) d x d y d z
\end{aligned}
$$

Defining a new "symmetrizer" (assuming $B(a, b)=B(b, a)$),

$$
\begin{aligned}
& P\left(\frac{x_{1}}{x_{2}, x_{3}}\right) A\left(x_{1}\right) B\left(x_{2}, x_{3}\right)=A\left(x_{1}\right) B\left(x_{2}, x_{3}\right)+A\left(x_{2}\right) B\left(x_{1}, x_{3}\right)+A\left(x_{3}\right) B\left(x_{1}, x_{2}\right) \\
& \Rightarrow\binom{3}{2} \int A(x) B(x, y) g(x) g(y) g(z) d x d y d z=\int P\left(\frac{x}{y, z}\right) A(x) B(y, z) g(x) g(y) g(z) d x d y d z
\end{aligned}
$$

as well as

$$
P\left(\frac{x_{1}, x_{2}}{x_{3}}\right) A\left(x_{1}, x_{2}\right) B\left(x_{3}\right)=A\left(x_{1}, x_{2}\right) B\left(x_{3}\right)+A\left(x_{1}, x_{3}\right) B\left(x_{2}\right)+A\left(x_{2}, x_{3}\right) B\left(x_{1}\right),
$$

we obtain

$$
\begin{aligned}
0 & =3!\int\left(\frac{1}{3!} S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+\frac{1}{2!} S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+\frac{1}{2!} S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)+\frac{1}{3!} S_{3}\left(x_{1}, x_{2}, x_{3}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3}= \\
& =\int\left(\frac{3+{ }^{+}}{3!} S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+\frac{3!}{2!} S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+\frac{3!}{2!} S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)+\frac{3!}{3!} S_{3}\left(x_{1}, x_{2}, x_{3}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3} \\
& =\int\left(S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+\binom{3}{2} S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+\binom{3}{2} S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)+S_{3}\left(x_{1}, x_{2}, x_{3}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3} \\
& =\int\left(S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+P\left(\frac{x_{1}}{x_{2}, x_{3}}\right) S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+P\left(\frac{x_{1}, x_{2}}{x_{3}}\right) S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)+S_{3}\left(x_{1}, x_{2}, x_{3}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3}
\end{aligned}
$$

$$
\Rightarrow \quad S_{3}\left(x_{1}, x_{2}, x_{3}\right)+S_{3}^{\dagger}\left(x_{1}, x_{2}, x_{3}\right)+P\left(\frac{x_{1}}{x_{2}, x_{3}}\right) S_{1}\left(x_{1}\right) S_{2}^{\dagger}\left(x_{2}, x_{3}\right)+P\left(\frac{x_{1}, x_{2}}{x_{3}}\right) S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)=0
$$

The definition of the "symmetrize" symbol P is now dear:
$P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right)$ denotes the sum over all the $\frac{n!}{k!(n-k)!}=\binom{n}{k}$ ways of dividing
the set of points x_{1}, \ldots, x_{n} into two sets of k and $(n-k)$ points. Permutations within each of these two sets are not taken into account, since the functions S_{e} are symmetric in their arguments.

We therefore conclude that the following identity must hold:

$$
\begin{equation*}
S_{n}\left(x_{1}, \ldots, x_{n}\right)+S_{n}^{+}\left(x_{1}, \ldots, x_{n}\right)+\sum_{1 \leqslant k \leqslant n-1} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k}\left(x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right)=0 \tag{21.9}
\end{equation*}
$$

Now, let us return to the (differential form of the) causality condition.
Unitarity implies

$$
\begin{gathered}
0=\frac{\delta}{\delta g(y)}\left(S S^{+}\right)=\frac{\delta S}{\delta g(y)} S^{+}+\frac{S S^{+}}{\delta g(y)} \\
\Rightarrow\left(\frac{\delta S}{\delta g(y)} S^{+}\right)^{+}=S \frac{\delta S^{+}}{\delta g(y)}=-\frac{\delta S}{\delta g(y)} S^{+} \quad \text { (anti-hermitean) }
\end{gathered}
$$

It is better to consider the following hermitean operator:

$$
\begin{equation*}
H(y ; g)=i \frac{\delta S(g)}{\delta g(y)} S^{+}(g) \tag{21.10}
\end{equation*}
$$

Let us compute the variation of $S(g)$ in the perturbative expansion

$$
n=1: \frac{\delta}{\delta_{g(y)}} \int S_{n}(x) g(x) d x=S_{n}(y)
$$

$$
\delta I[g]=I[g+\delta g]-I[g]
$$

$$
\begin{aligned}
& n=2: \frac{\delta}{\delta g(y)} \frac{1}{2!} \int S_{2}\left(x_{1}, x_{2}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2} \\
& \zeta \delta \int S_{2}\left(x_{1}, x_{2}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}= \\
&=\int S_{2}\left(x_{1}, x_{2}\right)\left(g\left(x_{1}\right)+\delta g\left(x_{1}\right)\right)\left(g\left(x_{2}\right)+\delta g\left(x_{2}\right)\right) d x_{1} d x_{2}-\int S_{2}\left(x_{1}, x_{2}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2} \\
& \simeq \int S_{2}\left(x_{1}, x_{2}\right)\left(g\left(x_{1}\right) \delta g\left(x_{2}\right)+g\left(x_{2}\right) \delta g\left(x_{1}\right)\right) d x_{1} d x_{2}
\end{aligned}
$$

2 order terms
are dropped

$$
\begin{aligned}
& =\iint\left(S_{2}\left(x_{1}, x_{2}\right)+S_{2}\left(x_{2}, x_{1}\right)\right) g\left(x_{1}\right) \delta g\left(x_{2}\right) d x_{1} d x_{2} \\
& =2 \int\left[\int S_{2}(x, y) g(x) d x\right] \delta g(y) d y
\end{aligned}
$$

$$
\Rightarrow \frac{1}{2!} \frac{\delta}{\delta g(y)}\left[\int S_{2}\left(x_{1}, x_{2}\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}\right]=\int S_{2}(x, y) g(x) d x
$$

$$
n=3: \quad \frac{\delta}{\delta g(y)}\left[\frac{1}{3!} \int S_{3}\left(x_{1}, x_{2}, x_{3}\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3}\right]=?
$$

w_{i} h $I[g]=\frac{1}{3!} \int S_{3} g g g$ " we have

$$
I[g+\delta g]-I[g]=\frac{1}{3!} \int S_{3}(g+\delta g)(g+\delta g)(g+\delta g)-\frac{1}{3!} \int S_{3} g g g
$$

symmetric in $\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{array}{r}
=\frac{1}{3!} \cdot 3 \cdot \int s_{3} g g \delta g \equiv \frac{1}{2!} \int S_{3}\left(x_{1}, x_{2}, x_{3}\right) g\left(x_{1}\right) g\left(x_{2}\right) \delta g\left(x_{3}\right) d x_{1} d x_{2} d x_{3} \\
\Rightarrow \frac{\delta}{\delta g(y)}\left[\frac{1}{3!} \int S_{3}\left(x_{1}, x_{2}, x_{3}\right) g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) d x_{1} d x_{2} d x_{3}\right]=\frac{1}{2!} \int S_{3}\left(x_{1}, x_{2}, y\right) g\left(x_{1}\right) g\left(x_{2}\right) d x_{1} d x_{2}
\end{array}
$$

It is clear that the formula for the general case is the following one:

$$
\begin{aligned}
\frac{\delta}{\delta g(y)}\left[\frac{1}{n!} \int S_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n}\right] & =\frac{1}{(n-1)!} \int S_{n}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y\right) g\left(x_{1}\right) \cdots g\left(x_{n-1}\right) d x_{1} \cdots d x_{n-1} \\
& \equiv \frac{1}{(n-1)!} \int S_{n}\left(y, x_{1}, x_{2}, \ldots, x_{n-1}\right) g\left(x_{1}\right) \cdots g\left(x_{n-1}\right) d x_{1} \cdots d x_{n-1}
\end{aligned}
$$

We can now obtain a perturbative expression for $H(y ; g) \longrightarrow$

$$
\begin{aligned}
& H(y ; g)=i \frac{\delta S(g)}{\delta g(y)} S^{+}(g)=i \frac{\delta}{\delta g(y)}\left(\sum_{n \geqslant 0} \frac{1}{n!} \int S_{n}\left(x_{1}, \ldots, x_{n}\right) g\left(x_{1}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n}\right) \times \\
& \times\left(\sum_{m \geqslant 0} \frac{1}{m!} \int S_{m}^{+}\left(z_{1}, z_{2}, \cdots, z_{m}\right) g\left(z_{1}\right) \cdots g\left(z_{m}\right) d z_{1} \cdots d z_{m}\right)= \\
& =\left(\sum_{n \geqslant 1} \frac{i}{(n-1)!} \int S_{n}\left(y, x_{1}, \ldots, x_{n-1}\right) g\left(x_{1}\right) \cdots g\left(x_{n-1}\right) d x_{1} \cdots d x_{n-1}\right)\left(\sum_{m \geqslant 0} \frac{1}{m!} \int S_{m}^{+}\left(z_{1}, z_{2}, \ldots, z_{m}\right) g\left(z_{1}\right) \cdots g\left(z_{m}\right) d z_{1} \cdots d z_{m}\right) \\
& \mathbb{T}_{\substack{\text { because } \\
S_{0}=\mathbb{1}}} \downarrow n^{\prime}=n-1 \\
& =\left(\sum_{n^{\prime} \geqslant 0} \frac{i}{S_{0}=1} \int S_{n^{\prime}+1}\left(y, x_{1}, \ldots, x_{n^{\prime}}\right) g\left(x_{1}\right) \cdots g\left(x_{n-1}\right) d x_{1} \cdots d x_{n^{\prime}}\right)\left(\sum_{m \geqslant 0} \frac{1}{m!} \int S_{m}^{+}\left(z_{1}, z_{2}, \ldots, z_{m}\right) g\left(z_{1}\right) \cdots g\left(z_{m}\right) d z_{1} \cdots d z_{m}\right) \\
& =\sum_{n \geqslant 0} \sum_{m \geqslant 0} \frac{i}{n!m!} \int S_{n+1}\left(y, x_{1}, \ldots x_{n}\right) g\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \int S_{m}^{+}\left(x_{n+1}, \ldots, x_{n+m}\right) g\left(x_{n+1}\right) \cdots g\left(x_{n+m}\right) d x_{n+1} \cdots d x_{n+m}
\end{aligned}
$$

this relabeling does no harm, as every time the som over m is performed at fixed n.

$$
\begin{aligned}
&=\sum_{n=0}^{\infty}(\underbrace{\sum_{k=0}^{n} \frac{i}{k!(n-k)!} \int S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right) g\left(x_{n}\right) \ldots g\left(x_{n}\right) d x_{1} \ldots d x_{n}}) \\
&=\frac{i}{n!} \sum_{0 \leq k \leq n} \int P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right) g\left(x_{1}\right) \ldots g\left(x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

(exactly the same computation as before)

$$
\begin{gathered}
=i \sum_{n \geqslant 0} \frac{1}{n!} \int[i \underbrace{\sum_{0 \leq k \leq n} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right)}_{0}] g\left(x_{n}\right) \cdots g\left(x_{n}\right) d x_{1} \ldots d x_{n} \\
=: H_{n}\left(y_{j}, x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

Summarizing, if we define

$$
\begin{equation*}
H_{n}\left(y ; x_{1}, \ldots, x_{n}\right):=i \sum_{0 \leq k \leqslant n} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right) \tag{21.12}
\end{equation*}
$$

then

$$
\begin{equation*}
H(y ; g)=i \frac{\delta S(g)}{\delta g(y)} S^{+}(g)=\sum_{n \geqslant 0} \frac{1}{n!} \int H_{n}\left(y, x_{1}, \ldots, x_{n}\right) g\left(x_{1}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n} \tag{21.11}
\end{equation*}
$$

The next step consists in evaluating the variational derivative of $H(y ; g)$ with respect

$$
\begin{aligned}
& \text { to "g(x)" } \rightarrow \\
& i \frac{\delta}{\delta g(x)}\left(\frac{\delta S(g)}{\delta g(y)} S^{+}(g)\right) \\
& =\frac{\sum_{n}{ }^{\prime \prime} \frac{1}{\delta g(x)} H(y ; g)}{n!} \frac{\delta}{\delta g(x)} \int H_{n}\left(y, x_{1}, \ldots, x_{n}\right) g\left(x_{1}\right) \cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n} \\
& \\
& =\sum_{n \geqslant 1} \frac{1}{(n-1)!} \int H_{n}\left(y, x, x_{1}, \ldots, x_{n-1}\right) g\left(x_{1}\right) \cdots g\left(x_{n-1}\right) d x_{1} \cdots d x_{n-1}
\end{aligned}
$$

Since we have arranged all terms in such a way that $H_{n}\left(y, x_{1}, x_{2}, \ldots, x_{n}\right)$ is symmetric w.r.t. x_{1}, \ldots, x_{n}, we obtain, from the differential condition of causality,
$H_{n}\left(y, x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if $y \gtrsim x_{i}$ for at least one $x_{j}(j=1, \ldots, n)$
21.3 Explicit form of $S_{1}(x)$ and $S_{2}(x, y)$

So far we have obtained the following identities, expressing at a "perturbative" level the conditions of unitasity, covariance and causality:

- Covariance: $\quad S_{n}\left(x_{1}, \ldots, x_{n}\right)=U(\wedge) S_{n}\left(\Lambda^{-1} x_{1}, \ldots, \Lambda^{-1} x_{n}\right) U(\wedge)^{+}$
- Unitarily:

$$
\begin{align*}
S_{n}\left(x_{1}, \ldots, x_{n}\right) & +S_{n}^{+}\left(x_{1}, \ldots, x_{n}\right)+ \\
& +\sum_{1 \leqslant k \leqslant n-1} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k}\left(x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right)=0 \tag{b}
\end{align*}
$$

- Causality: $H_{n}\left(y, x_{1}, x_{2}, \ldots, x_{n}\right) \equiv i \sum_{0 \leq k \leqslant n} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right)=0$ if $y \gtrsim x_{i}$ for at least one $x_{j}(j=1, \ldots, n)$

Adding additional physical requirements related to the "correspondence principle", we will proceed to determine the explicit form of S_{n}. We will start with S_{1} and S_{2}.

Notice that (b) and (c) above can be regarded as recurrence relations, and as such they can in principle be used to determine S_{n} in terms of $S_{k}(k \leq n-1)$. (b) will determine the hermitean part of S_{n}, whereas (c) will determine its anti-hermitean pant.
In ordar to start the induction algorithm, we need to fix $S_{1}(x)$. This will be done by appealing to the correspondence principle.

Let us now consider the causal factorization property

$$
\text { Supp } g_{2}>\operatorname{Supp} g_{1} \Rightarrow S\left(g_{1}+g_{2}\right)=S\left(g_{2}\right) S\left(g_{1}\right)
$$

If the supports of g_{1} and g_{2} are space-like, $g_{1} \sim g_{2}$, then we must have $\left[S\left(g_{1}\right), S\left(g_{2}\right)\right]=0$.

Using the series expansion at order 1, this gives

$$
\int\left[S_{1}(x), S_{1}(y)\right] g_{1}(x) g_{2}(y) d x d y=0 \text { this order }
$$

It seems, therefore, that assuming (micro-) locality for $S_{1}(x)$ is a reasonable assumption (more on this condition later) \rightarrow So we assume the following locality property:

$$
\begin{equation*}
x \sim y \quad \Rightarrow \quad\left[S_{1}(x), S_{1}(y)\right]=0 \tag{21.14}
\end{equation*}
$$

From (b), ie., unitarity, we obtain, for $n=1, S_{1}(x)+S_{1}^{+}(x)=0$. This means that S_{1} is anti-hermitean. In other words, unitarity implies that S_{1} is of the form

Finally, covariance implies $S_{1}(x)=U(\Lambda) S_{1}\left(\Lambda^{-1} x\right) U(\Lambda)^{+}$
$\Longrightarrow \Lambda_{1}(x)$ must be an Hermitean relativistically covariant operator satisfying the condition of locality.
It turns that, from a physical point of view, $\Lambda_{1}(x)$ can be regarded as the interaction Lagrangian.
Consider the classical action I for the care where the interaction is "switched on/ off" by means of a test function g :

$$
I=\int \mathscr{L}_{0}(x) d x+\int \mathscr{L}(x) g(x) d x
$$

\mathscr{L}_{0} : free Lagrangian
L: interaction Lagrangian.
\rightarrow Regard $g(x)$ as an "infinitesimal of 1st order"
\rightarrow The action I will be altered by $\int \mathscr{L g}$, where \mathcal{L} depends on the free field functions.
Now, Schrodinger dynamics $\rightarrow \quad i \partial_{t} \psi=H \psi$
Wave function in terms of action $\rightarrow \psi=e^{i I}$
Free case: $\quad \psi_{0}=e^{i I_{0}} \rightarrow$ Interacting case $: \quad \psi=e^{i I}=e^{i \int \mathscr{L}(x) g(x) d x} \psi_{0}$
For an infinitesimal change, $\psi \rightarrow \psi^{\prime}=\psi+\delta \psi, \quad \delta \psi=\left(i \int \mathscr{L}(x) g(x) d x\right) \psi$
Now "invoke" a "correspondence principle" and demand

$$
|\Phi\rangle \rightarrow\left|\Phi^{\prime}\right\rangle=|\Phi\rangle+|\delta \Phi\rangle, \quad|\delta \Phi\rangle=\left(i \int \mathscr{L}(x) g(x) d x\right)|\Phi\rangle
$$

i.e., for infinitesimal $g, S(g)$ should be of the form

$$
S(g) \approx 1+i \int \mathscr{L}(x) g(x) d x
$$

ie,,$\quad \mathscr{L}_{\text {int }} \equiv \Lambda_{1}$

$$
S_{1}(x)=i \mathscr{L}_{i \text { int }}(x) \quad \text { (21.20) }
$$

\longrightarrow And so, the interaction Lagrangian must be a local, Hermitian, and relativistically covaricut combination of operator field functions.
\longrightarrow Determination of $S_{2}(x, y)$
The causality condition, (21.13), states that

$$
H_{n}\left(y, x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { if } y \geqslant x_{i} \text { for at lest one } x_{j}(j=1, \ldots, n) \text {, }
$$

where H_{n} has been defined in (21.11) as

$$
H_{n}\left(y_{;} ; x_{1}, \ldots, x_{n}\right):=i \sum_{0 \leqslant k \leqslant n} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right),
$$

$$
S_{0+1} S_{1-0}^{+}+S_{2} S_{0}^{+}
$$

In the particular case $n=1$, we have:

$$
H_{1}\left(y ; x_{1}\right)=i \underbrace{P\left(\frac{\phi^{\prime \prime}}{x_{1}}\right)}_{=i d} S_{1}(y) S_{1}^{+}\left(x_{1}\right)+i \underbrace{P\left(\frac{x_{1}}{n \phi^{\prime \prime}}\right)}_{=i d} S_{2}\left(y, x_{1}\right) \underbrace{S_{o}^{+}}_{=1}
$$

$$
\begin{array}{rlr}
H_{1}(x, y) & =i S_{2}(x, y)+i S_{1}(x) S_{1}^{+}(y) \\
& =i S_{2}(x, y)+i \mathscr{L}(x) \mathcal{L}(y) & S_{1}=i \mathcal{L} \rightarrow S_{1}^{+}=-i \mathcal{L}^{+} \\
\end{array}
$$

Now, the (differential) condition of causality implies that $H_{2}(x, y)=0$ whenever $x \geqslant y$:

$$
\begin{equation*}
x \geqslant y \quad \Rightarrow \quad S_{2}(x, y)=-\mathscr{L}(x) \mathscr{L}(y)^{\prime \prime} \tag{*}
\end{equation*}
$$

If $x \leqslant y$, then we have:

$$
S_{\uparrow}(x, y)=S_{2}(y, x) \stackrel{(*)}{=}-\mathscr{L}(y) \mathscr{L}(x)
$$

S_{2} is symmetric.
Thus, we conclude that

$$
S_{2}(x, y)= \begin{cases}-\mathscr{L}(x) \mathscr{L}(y), & x \geqslant y \tag{21.25}\\ -\mathscr{L}(y) \mathscr{L}(x), & x \geqslant y\end{cases}
$$

Notice, in particular, that if $x \sim y$, then we have two equivalent expressions for $S_{2} \rightarrow x \sim y \Rightarrow S_{2}(x, y)=-\mathscr{L}(x) \mathscr{L}(y) \stackrel{!}{=}-\mathscr{L}(y) \mathscr{L}(x)$, i.e.,

$$
x \sim y \quad \Rightarrow \quad[\mathscr{L}(x), \mathscr{L}(y)]=0
$$

\rightarrow We see that the locality condition for the interaction Lagrangian follows from the causality condition on $S(g)$.

As a consistency check, let us verify that the unitarity condition is satisfied: this must bedore, as causality and unitarity are independat conditions!
For $x \approx y$ we have

$$
\begin{aligned}
& S_{2}(x, y)+S_{2}^{+}(x, y)+S_{1}(x) S_{1}^{+}(y)+S_{1}(y) S_{1}^{+}(x)= \\
& =-\mathscr{L}(x) \mathscr{L}(y)-(\mathscr{L}(x) \mathscr{L}(y))^{+}+\mathscr{L}(x) \mathscr{L}(y)+\mathscr{L}(y) \mathscr{L}(x) \\
& =-\mathscr{L}(x) \mathscr{L}(y)-\mathscr{L}(y) \mathscr{L}(x)+\mathscr{L}(x) \mathscr{L}(y)+\mathscr{L}(y) \mathscr{L}(x) \\
& =0 .
\end{aligned}
$$

The same identity is obtained if we assume $x \leqslant y$.
The above result can be expressed in terms of a time-ordered product:

$$
\begin{equation*}
S_{2}(x, y)=-T(\mathscr{L}(x) \mathcal{L}(y)) \tag{21.29}
\end{equation*}
$$

Notice, however, that there is an ambiguity when $x^{\circ}=y^{\circ}$.
§21.5 Determination of the functions S_{n} for arbitrary n.

Going back, once again, to equs. (21.11) and (21.13) we have, for $n=2$,

$$
\begin{aligned}
& H_{2}\left(y ; x_{1}, x_{2}\right):=i \sum_{0 \leq k \leq 2} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{2}}\right) S_{k+1}\left(y, x_{1}, \ldots, x_{k}\right) S_{2-k}^{+}\left(x_{k+1}, \ldots, x_{2}\right) \\
& =i P\left(\frac{" \phi^{\prime \prime}}{x_{1}, x_{2}}\right) S_{1}(y) S_{2}^{+}\left(x_{1}, x_{2}\right)+i P\left(\frac{x_{1}}{x_{2}}\right) S_{2}\left(y, x_{1}\right) S_{1}^{+}\left(x_{2}\right)+i P\left(\frac{x_{1}, x_{2}}{" \phi^{\prime \prime}}\right) S_{3}\left(y, x_{1}, x_{2}\right) \\
& =i S_{1}(y) S_{2}^{+}\left(x_{1}, x_{2}\right)+i S_{2}\left(y, x_{1}\right) S_{1}^{+}\left(x_{2}\right)+i S_{2}\left(y, x_{2}\right) S_{1}^{+}\left(x_{1}\right)+i S_{3}\left(y, x_{1}, x_{2}\right) \\
& =i^{2} \mathscr{L}(y)\left(-T\left(\mathcal{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)^{+}-i T\left(\mathcal{L}(y) \mathscr{L}\left(x_{1}\right)\right)(-i) \mathscr{L}\left(x_{2}\right)-i T\left(\mathscr{L}(y) \mathscr{L}\left(x_{2}\right)\right)\left(-i \mathscr{L}\left(x_{1}\right)\right)+i S_{3}\left(y, x_{1}, x_{2}\right)\right. \\
& =\mathscr{L}(y) \underset{\substack{\left.\begin{array}{c}
\text { anti-chronological } \\
\text { order (}
\end{array}\right)}}{\left(\mathcal{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)}-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right)\right) \mathscr{L}\left(x_{2}\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{2}\right)\right) \mathscr{L}\left(x_{1}\right)-i^{3} S_{3}\left(y, x_{1}, x_{2}\right)
\end{aligned}
$$

Fran (21.13) we know that the above expression must vanish if either $y \gtrsim x_{1}$ or $y \gtrsim x_{2}$.
(*) $\bar{\top}(\mathscr{L}(x) \mathscr{L}(y)):=\theta\left(y^{0}-x^{0}\right) \mathcal{L}(x) \mathscr{L}(y)+\theta\left(x^{0}-y^{0}\right) \mathcal{L}(y) \mathcal{L}(x)$
Since $\mathscr{L}^{+}(x)=\mathscr{L}(x)$, notice that $(T(\mathcal{L}(x) \mathscr{L}(y)))^{+}=\bar{T}(\mathscr{L}(x) \mathscr{L}(y))$

Disregarding the cares $y \sim x_{i}$, we have 4 possibilities, corresponding to
(a) $\quad x_{1}<y<x_{2}$
(b) $\quad x_{2}<y<x_{1}$
(c) $\quad x_{1}<x_{2}<y$
(d) $\quad x_{2}<x_{1}<y$

From our knowledge of Dyson's series, we expect to obtain

$$
\begin{equation*}
S_{n}\left(x_{1}, \ldots, x_{n}\right)=i^{n} T\left(\mathscr{L}\left(x_{1}\right) \cdots \mathscr{L}\left(x_{n}\right)\right) . \tag{*}
\end{equation*}
$$

But, as we shall see, it is only possible to show that (*) is compatible with the 3 conditions we have imposed on the S-matrix (i.e., covariance, unitarity and causallite). This is due to the ambiguity in the definition of the T-products. Therefore, an important question we have to ask is: What is the most general form of S_{n} which is compatible with the 3 conditions?
Let us first write in explicit form the time-ordered product $T\left(\mathscr{L}(y) \mathcal{L}\left(x_{1}\right) \mathcal{L}\left(x_{2}\right)\right)$, in order to compare it with $S_{3}\left(y_{1} x_{1}, x_{2}\right)$.

We have:

$$
\begin{aligned}
& T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)= \\
&=\theta\left(x_{2}-x_{1}\right) \theta\left(x_{1}-y\right) \mathscr{L}\left(x_{2}\right) \mathscr{L}\left(x_{1}\right) \mathscr{L}(y)+\theta\left(x_{1}-x_{2}\right) \theta\left(x_{2}-y\right) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right) \mathscr{L}(y) \\
&+\theta\left(x_{2}-y\right) \theta\left(y-x_{1}\right) \mathscr{L}\left(x_{2}\right) \mathscr{L}(y) \mathscr{L}\left(x_{1}\right)+\theta\left(x_{1}-y\right) \theta\left(y-x_{2}\right) \mathscr{L}\left(x_{1}\right) \mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \\
&+\theta\left(y-x_{2}\right) \theta\left(x_{2}-x_{1}\right) \mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \mathscr{L}\left(x_{1}\right)+\theta\left(y-x_{1}\right) \theta\left(x_{1}-x_{2}\right) \mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right) .
\end{aligned}
$$

Now, what we know from the causality condition is:

$$
\begin{aligned}
x_{1}<y \quad \text { or } x_{2}<y \quad & H_{2}\left(y ; x_{1}, x_{2}\right)=\mathscr{L}(y) \bar{T}\left(\mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)-T\left(\mathscr{L}(y) \mathcal{L}\left(x_{1}\right)\right) \mathscr{L}\left(x_{2}\right) \\
& -T\left(\mathcal{L}(y) \mathscr{L}\left(x_{2}\right)\right) \mathscr{L}\left(x_{1}\right)-i^{3} S_{3}\left(y, x_{1}, x_{2}\right) \stackrel{!}{=} 0 .
\end{aligned}
$$

Let us consider the 4 cases (a), (b),(c),(d) described above and see if, in those domains, the expressions for S_{3} that follow from $H_{2}=0$ coincide with the time-ordered product:
(a) $x_{1}<y<x_{2}: T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)=\mathscr{L}\left(x_{2}\right) \mathscr{L}(y) \mathscr{L}\left(x_{1}\right)$

On the other hand, the condition $H_{2}=0$, in this case, leads to:

$$
\begin{aligned}
i^{3} S_{3}\left(y, x_{1}, x_{2}\right) & =\mathscr{L}(y) \bar{T}\left(\mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right)\right) \mathscr{L}\left(x_{2}\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{2}\right)\right) \mathscr{L}\left(x_{1}\right) \\
& =\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)-\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)-\mathscr{L}\left(x_{2}\right) \mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \\
& =-\mathscr{L}\left(x_{2}\right) \mathscr{L}(y) \mathscr{L}\left(x_{1}\right)
\end{aligned}
$$

(b) $x_{2}<y<x_{1}: T\left(\mathcal{L}(y) \mathcal{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)=\mathscr{L}\left(x_{1}\right) \mathscr{L}(y) \mathscr{L}\left(x_{2}\right)$,

$$
\begin{aligned}
i^{3} S_{3}\left(y, x_{1}, x_{2}\right) & =\mathscr{L}(y) \bar{T}\left(\mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right)\right) \mathscr{L}\left(x_{2}\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{2}\right)\right) \mathscr{L}\left(x_{1}\right) \\
& =\mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \vec{L}\left(x_{1}\right)-\mathscr{L}\left(x_{1}\right) \mathscr{L}(y) \mathscr{L}\left(x_{2}\right)-\mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \mathscr{L}\left(x_{1}\right) \\
& =-\mathscr{L}\left(x_{1}\right) \mathscr{L}(y) \mathscr{L}\left(x_{2}\right)
\end{aligned}
$$

(c) $x_{1}<x_{2}<y$:

$$
\begin{aligned}
T & \left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)=\mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \mathscr{L}\left(x_{1}\right), \\
i^{3} S_{3}\left(y, x_{1}, x_{2}\right) & =\mathscr{L}(y) \bar{T}\left(\mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right)\right) \mathscr{L}\left(x_{2}\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{2}\right)\right) \mathscr{L}\left(x_{1}\right) \\
& =\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)-\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)-\mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \mathscr{L}\left(x_{1}\right) \\
& =-\mathcal{L}(y) \mathscr{L}\left(x_{2}\right) \mathscr{L}\left(x_{1}\right)
\end{aligned}
$$

(d) $x_{2}<x_{1}<y$: $T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)=\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)$

$$
\begin{aligned}
i^{3} S_{3}\left(y, x_{1}, x_{2}\right) & =\mathscr{L}(y) \bar{T}\left(\mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right)\right) \mathscr{L}\left(x_{2}\right)-T\left(\mathscr{L}(y) \mathscr{L}\left(x_{2}\right)\right) \mathscr{L}\left(x_{1}\right) \\
& =\mathscr{L}(y) \mathscr{L}\left(x_{2}\right) \vec{L}\left(x_{1}\right)-\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)-\mathscr{L}(y) \mathscr{L} /\left(x_{2}\right) \mathscr{L}\left(x_{1}\right) \\
& =-\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)
\end{aligned}
$$

\rightarrow So we have verified that, for those configurations of $\left(y, x_{1}, x_{2}\right)$ corresponding to cases (a) $-(d)$, the equality

$$
S_{3}\left(y, x_{1}, x_{2}\right)=i^{3} T\left(\mathscr{L}(y) \mathscr{L}\left(x_{1}\right) \mathscr{L}\left(x_{2}\right)\right) .
$$

holds. The problem is that there is, for the moment being, not much more we can lo. We will therefore propose this as an ansatz and check that it complies with the 3 conditions.

For S_{3}, the causality condition is just what we have done.
What about unitarity? Unitarity requires $(n=3)$

$$
\begin{aligned}
S_{n}\left(x_{1}, \ldots, x_{n}\right) & +S_{n}^{+}\left(x_{1}, \ldots, x_{n}\right)+ \\
& +\sum_{1 \leq k \leq n-1} P\left(\frac{x_{1}, \ldots, x_{k}}{x_{k+1}, \ldots, x_{n}}\right) S_{k}\left(x_{1}, \ldots, x_{k}\right) S_{n-k}^{+}\left(x_{k+1}, \ldots, x_{n}\right)=0
\end{aligned}
$$

Writing this explicitly for $n=3$, we get

$$
\begin{aligned}
S_{3}\left(x_{1}, x_{2}, x_{3}\right)+ & S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+P\left(\frac{x_{1}}{x_{2}, x_{3}}\right) S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+P\left(\frac{x_{1}, x_{2}}{x_{3}}\right) S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)= \\
= & S_{3}\left(x_{1}, x_{2}, x_{3}\right)+S_{3}^{+}\left(x_{1}, x_{2}, x_{3}\right)+S_{1}\left(x_{1}\right) S_{2}^{+}\left(x_{2}, x_{3}\right)+S_{1}\left(x_{2}\right) S_{2}^{+}\left(x_{1}, x_{3}\right)+ \\
& S_{1}\left(x_{3}\right) S_{2}^{+}\left(x_{1}, x_{2}\right)+S_{2}\left(x_{1}, x_{2}\right) S_{1}^{+}\left(x_{3}\right)+S_{2}\left(x_{1}, x_{3}\right) S_{1}^{+}\left(x_{2}\right)+S_{2}\left(x_{2}, x_{3}\right) S_{1}^{+}\left(x_{1}\right) \\
\sim & -i T\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)+i \bar{\top}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)-i \mathscr{L}_{1} \bar{T}\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right)-i \mathscr{L}_{2} \bar{T}\left(\mathscr{L}_{1}, \mathscr{L}_{3}\right)-i \mathscr{L}_{3} \bar{T}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \\
& +i T\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \mathscr{L}_{3}+i T\left(\mathscr{L}_{1}, \mathscr{L}_{3}\right) \mathscr{L}_{2}+i T\left(\mathscr{L}_{1}, \mathscr{L}_{3}\right) \mathscr{L}_{1} \\
\mathscr{L}_{i=\mathscr{L}\left(x_{i}\right)}= & 0 \text { (exercise!) }
\end{aligned}
$$

For the general case, see Bogoliubou-Shirkou, §21.5, where a genera argument is given to show that the time-ordered exponential satisfies the 3 conditions.
\$21.6 Analysis of the Arbitrariness of the Functions S_{n} and the Most General form of SIg)

So for we have argued that $S_{n}\left(x_{1}, \ldots, x_{n}\right)=i^{n} T\left(\mathcal{L}\left(x_{1}\right) \ldots f\left(x_{n}\right)\right)$ is compatible with the 3 requirements we have imposed on the S-matrix. Actually, we have seen that the freedom remaining is produced by the ambiguities produced by the ill-defined time-ordered products along diagonals. We will now explore the nature of this "remaining freedom". First, the unitasity condition (at "level n") involves the linear combination $S_{n}+S_{n}^{+}$. As far as we are only concerned with the causality condition, then, S_{n} is only determined up to an antihermitean operator, say $i \Lambda_{n}\left(w h e r e \Lambda_{n}^{+}=\Lambda_{n}\right)$. In this way we have $\left(S_{n}+i \Lambda_{n}\right)^{+}+\left(S_{n}+i \Lambda_{n}\right)=S_{n}^{+}-i K_{n}^{7}+i K_{n}^{\prime}+S_{n}=S_{n}^{+}+S_{n}$

Since, by definition, S_{n} is symmetric in its arguments, Λ_{n} must also have the same property. Furthermore, as we saw in the example $n=3$, the causality condition completely determines $S_{n}\left(x_{1}, \ldots, x_{n}\right)$ whenever $x_{1} \geqslant x_{j}$ (any $\left.j \in\{2, \ldots, n\}\right)$. Clearly, in this domain In must vanish. But then, because of the symmetry in its arguments, the same must be true whenever $x_{i} \geqq x_{j}$ (for any pair $i, j \in\{1, \ldots, n\}$). This in turn implies that $\Lambda_{n}\left(x_{1}, \ldots, x_{n}\right)$ must vanish whenever $x_{i} \neq x_{j}$ (any pair).

The only remaining set for the support of Λ_{n} is, then, the full diagond \Rightarrow An must be a quasi-local operator, of the form

$$
\begin{aligned}
& \sum p_{\alpha}\left(\left\{\partial_{i} ?_{1}\right) \delta\left(x_{1}-x_{2}\right) \cdots \delta\left(x_{1}-x_{n}\right): \cdots \varphi_{\alpha}\left(x_{j}\right) \cdots\right. \text { : } \\
& \quad \uparrow \begin{array}{c}
p_{\alpha}: \text { polynomial on } \\
\partial_{1}, \cdots, \partial_{n}
\end{array}
\end{aligned}
$$

