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Presentacion

A lo largo de Ia historia de la ciencia, la fisica y la matemdtica han mantenido una
relacién muy estrecha; en algunos casos el desarrollo de algdn concepto fisico
impulsa alguna disciplina matemdtica; en otros el desarrollo formal, o el
entendimiento preciso de algin concepio fisico, requiere del uso de lenguaje
matemitico desatrellado inicialmente con prapdsitos diferentes. Por €so resulta
importante 1a bisqueda de espacios, cn los cuales puedan ser discutidas las nuevas
formas de interaccién entre estas disciplinas. De manera concrefa, el empleo de
procedimicntos y conceptos de la geometria diferencial encuentra dia a dia mis
posibilidades cn ramas de la fisica apartentemente diferentes como lo constituyen
la tcorfa cudntica de campos y la fisica de la materia condensada, las cuales
parecen recuperar algo de su identidad original a través de problemas que se
pueden reducir de alguna forma a problemas de indole geométrico.

Ofrecemos por lo tanto en estas memorias un primer ejemplo, que muestra las
posibilidades de intercambio entre la Fisica y Ia Matemiitica para entender diversas
inquictudes que son pertinentes en el desarrollo interno de las dos disciplinas.

Luis Quiroga Jaime Lesmes
Depto. de Fisica Depto. de Matemdticas
Universidad de los Andes Universidad de los Andes

Fabian Torres A.
Revista El Tambor de Feynman
Editor




SOME NOTES ON GEOMETRY AND QUANTIZATION
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AA 4976, Santafé de Bogota, D. C., Colombia
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Gauge theory of particle physics rests on the observation that the basic physical
concepts (fields and particles) cannot, in general, be described canonically by elemen-
tary mathematics -—the mathematics of functions and calculus. Rather calculus is the
‘vacuum’ or ‘least energy’ state of mathematics, where the mathematics, and hence
the physics, is essentially ‘trivial’. It postulates, nevertheless, that in small patches
of space-time the mathematics is trivial, though in general highly non-canonically
~—that is, 1f 15 trivial but one must choose a frame of reference (coordinates) in order
to achieve that triviality. Such a choice is called a ‘gauge’ and changing the frame
of reference is called a ‘gauge transformation’. The crucial requirement of a gauge
theory 1s that it requires the physics to be invariant under local gauge transformations
(le, ones that vary between different points). That means something is unmeasurable
and that implies a conserved quantity, for example, ‘charge’ in electromagnetism or
‘colour’ in SU(2)-Yang-Mills theories. The relation between gauge symmetries and
conservation laws is made precise by Noether’s Theorem.

The global non-triviality of a system is encoded in the way local descriptions are
Joined together, and that is topology. Topology tells us about intrinsic global prop-
erties of a space, essentially how many holes there are in i1t. Perhaps the best known
example of that is the Euler mimber x(X) of a compact surface &. One finds that

x(L)=2-2g -
where g =number of holes in I, so y(sphere) = 2, x(torus) = 0. Moreover, two
surfaces £; and Iy are isomorphic if and only if x(X1) = x(X2). So the Euler number
is a topological invariant and gives a “functor’

x : { Space of surfaces} — 7
by —  x(2).

Primer Encuentro de Geometria Diferencial en Fisica.
, L Typeset by ApS-TEX
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Because the dynamics of physical systems Jetermine associated topological phase
and configuration spaces, we sce that fundamental physical characteristics may be re-
flected in the topology. Different fundamental particles will have topologically distinct
dynamical spaces.

However, gauge theory is not topology. Gauge theory mathematically describes
classical mechanics and field theory, and that is differential geometry. Differential
geometry is essentially concerned with the local properties of space determined by its
differential and unitary (metric} structure {e. g. curvature, lengths of curves, volume).
The enchanting aspect is that we find that differential geometry determines or tell
us about the topology of a space. Perhaps the prototypical example of this is the
Gauss-Bonnet Theorem which states that

x(Zg) = 51;[2 Kz, dudv

g

where Ky, denotes the Gaussian curvature of the surface ;. This presages much
deeper relations between differential geometry and topology, most notably the Atiyah-
Singer index theorem.

Physically, the movement from the continous phenomena described by differential
geometry to the discrete phenomena of topology is best seen as a movement from
classical (continous energy) physics to quantum (discrete energy) physics. Indeed the
numbers x(X,) are examples of what plysicists call ‘topological quantum mumbers’.
Thus gauge theory is used to formulate classical field theory which one then secks to
quantize in some natural way to get the corresponding quantum theory. It should be
noted that this may be a purely formal procedure, e. g. for the weak and strong force,
because the theories may not exist as classical field theories, or perhaps an impossible
procedure.

These notes represent the content of tliree rapid introductory lectures to differential
geometry. Consequently, they do not attempt to be at all comprehensive. The first
part does treat the construction of the tangent bundle in some detail since the tangent
bundle is the prototypical example of a vector bundle. [ believe one can avoid reading
many arduous text books by understanding one or two basic examples thoroughly,
and so I hope this account may assist 1n that process. The second part presents
a quick review of some of the ideas concerning vector bundles in general. Finally,

SOME NOTES ON GEOMETRY AND QUANTIZATION 3

ihe third section introduces connections very rapidly and presents an outline of the
construction of a 0 + 1-dimensional topological quantum field theory.

. Tur TANGENT BUNDLE

1.1 Manifolds.

In Newtonian mechanics one considers the universe to be 4-dimensional, corre-
sponding to space and time, and to be ‘flat’. One should not therefore conclude that
the universe is a copy of R4 Before Galileo that was (not unreasonably) the assump-
tion in the geocentric model of the universe with the Earth at its centre as a preferred
point, the origin. However, it is now generally accepted that the Earth is just a point
and one canmnot say there is a natural centre or origin. In other words, space-time
is flat affine space A* —Of course, this is the Newtonian picture; it could be that
the universe lias a hugely complicated global geometry. A% is distinguished from R*
in that there is no fixed origm. The group ®* acts on A?* by parallel displacements
(v—vta, vE A4 ¢ € R?), so the sum of true points is not defined, but their differ-
ence is defined and is a vector in 1. Tt is, nevertheless, often useful to choose some
point in A% to be the origin so that we can give different points coordinates relative to
the choice of origin and also talk about lengths by introducing a Euclidean structure
[t ]} Thus although A?* exists intrinsically we find it conventent to identify it with R?
to be able to work in ‘local’ (thougli in this case ‘global’) coordinates. Manifolds are
the generalization of this 1dea to curved space. To give the precise definition first let
us recall that a topological space is a set X with a topology 7. A topology 7 on X 1s
a family of subsets 7 = {U, 1« € I}of X, called neighbourhioods, or open sets, such
that the empty set B and X belong to 7, thie union of any number of open sets belongs
to 7, the intersection of any finite number of open sets belongs to 7. Once a set 1s en-
dowed with a topology one can talk about continuity, about continuous functions on
X. In the case of R” that is equivalent to the usual e-6 definition of continuity when
R™ is given the metric topology (generated by) Tmesric = {Uuly) € Bt ye R},
Unly) = {z € R* : |l — yl| < a}, where || || denotes the Euchidean norm. To be
more precise, if (X, 1) and (Y, 72) are topological spaces then a mapping f: X =Y
is said to be continuous if f~1(U) € 7y for every U € 72, ie the inverse image of any
open subset is open.

The basic notion of topological equivalence is liomeomorphism. We say, in the
above situation, that X and Y are homeomorphic if there is a bijective mapping
f:X — Y which is contmous and has continuous inverse f~1; f is then said to be a
homeomorphism.

We can now formally define an n-dimensional manifold M to be a Hausdorff topo-
logical space such that eacls point has a neighbourhood homeomorphic to an open
subset of B™. Thus a manifold is a topological space that locally “looks like” R™.
Ylausdorfi’ means that for any two distinct points z,,23 € M there exist disjoint
open sets Uy, Us in the topology of M, containing x; and respectively, ie z; € Uy,
zy € Uy and U; N U, = & this is included to avoid ‘pathological” cases, so M really
does look like B™ locally. Notice that to show M 1s a manifold we have only to find
a covering of M by open sets {U; 1 7 € A} (so each U, € ) and a corresponding
homeomorphism ¢; @ U; — v, c B (V; open), ie we do not have to find such a
homcomorphism for every open set in the topology. We call the pair (U;, ¢:) a chart




4 SIMON SCOTT

for M and the collection of charts A = { (Ui, ¢;) : 7 € A} an atlas for M. This works
on precisely the same principle as a geographical atlas; each region of the world is
covered by a page (ie a chart) in the atlas describing the geographical features of
the region. To move from one region to another one moves between different pages
(charts) and there are precise instructions for how to do this*. These transitions are
achieved in the case of manifolds by transition functions which are homeomorphisms

that move from onc chart to another. To be precise we have the following diagram of
maps:

~_ i

i Ny} » v

PN Y,

that 1s, the following diagram commutes

bi
Ui N Uj E— ¢i((]i N U])

l(!l Td’t.o:}ﬁj-l

U.n Uj —¢—> gf)j(Ui N Uj)
(where, of course, ¢; means the restriction of ¢; : U; — V; to U; N U, CUp).

The homeomorphisms ¢i; = ¢; 0 6; 7 : ¢;(Us N U;) — ¢:(U; N U;) are the transition
functions of the atlas.

To each chart (U, ¢i) on M we have an associated system of local coordinates
x = (xy,...,2o,) defined by

ep=u 0 U; C M —=R!
_ L . . .. .
where uy : R* — RY, ug(ay,...,a,) = a;, is the k™ canonical projection (or coordi-

nate) function on ™, ie its picks outthe &*® component of the vector in R™. So we
give X coordinates in U/; by borrowing them from R". However, if € M lies in the

*Indeed mamny of our ideas in geoctry are a direct result of navigation of the Earth, in particular
the geometric description of a splere is really the same as cartography (mapping) of planet Earth.
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overlap of two charts (Ui, ¢;), (I/;, ¢;) then we have two different coordinates for x,

namely

&~ (#1,...,0,) where 7y = ug o ¢; 1 U; NU; = R
and

@ (y1,...,yn) where yp =ugog, : U;NU; — R

But that is [ine because we know precisely how they are related, the transition function
¢;; takes one to the other; ¢ @ (y1, .. yn) — (x1, . @)

Now one of our basic aims is to do calenins on manifolds, so that means we need
to know lLiow to differentiate functions on M. Well, again we horrow the idea from
R" using the coordinate charts —because we only know what ‘derivative’ means in
Fuclidean space; we build using what we already know, not what we don’t. First,
recall that a [nnction f: U ¢ R* — R!, where U is ope, is differentiable of class C*

on U for k € NU {0}, if the partial derivates (—?1—;[; exist and are continuous on U for

r<k. Amap f:U CR* — R™is C* if each of its component functions f; = u; o f,
i=1,...,mare C* If fis C* for all k > 0 then we say that f is C™ or ‘smooth’.
We shall only be concerued with €™ maps.

To talk about smooth functions on a manifold M we have to augment the topo-
logical structure with a differentiable structure (That is, rather than talk about
homeomorphisms we must talk about their smooth counterparis which are called
diffeomorphisms). The basic refinement we need is to endow A with a (/-atlas;
that is, an atlas 4 = {(U;,d;) : 7 € A} for M sucli that the transition functions
S5 0 o; (U NGy — 63U N U;) are €. Iu fact, that means they are diffeomor-
phisms; they are smooth homeomorphisms with smooth inverses. The C™-atlas is
said to define a differentiable structure on A if it is maximal —that means, il (U, ¢)
is a chart on M such that go¢; ~! and ¢; 0 ¢~ are C™ for all i € A, then (U, ¢) € A.
In fact, to show a manifold has a differentiable structure it is enough to find just one
C™=-atlas A, because there is always a unique differentiable structure F containing
A, namely

F={(U,§): Vet dog, "andd;o¢ ! are C™ for all i € A*}.

Given a dillerentiable structure, M is then -said to be a differentiable (or smooth)
manifold of dimension n.

We can 1ow define what we mean by a C™ function f : M — R!. Let A =
{(U;,¢:) i€ A} be a C™-atlas on M. Then f: M — R! is differentiable or C* or
smooth if fog; ™! V; C B* — KR! is O™ for each coordinate patch, ie for each i € A
{Note that fo #; 7! is a map between Euclidean spaces where C™ is well defined).
We denote the space of all €™ functions on M by C°*°(A).

More generally, if A and N are differentiable manifolds and f: M — N is a map
between them then fis ¢ if for each ("™ coordinate chart (I, ) on M and each

*le ([]",rf}") (= A,

e
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C™ coordinate chart (W,¢) on N (ie lying in C™ atlases) the function

Ypofod L VCR" — R HU)=V CR™
m = dim M, n=dimN
V — R"
= T
M —f—> N

is C*°. We denote the space of all C* maps M — N by C*(M; N). In particular, if

71N - Misalso(C™ and fisa homeomorphism then f is called a diffeomorphism

between M and N. This is the basic notion of equivalence in differential topology.
Now lets see some simple examples of manifolds.

Example 1.1. R”? with de canonical atlas A = {,(B™ i) } (id =identity map) con-
sisting of a single chart is trivially a G™ manifold. More generally, any vector space
V (finite-dimensional) has a natural C™-manifold structure. If {ei } is a basis for V,
then the dual basis {¢;* } defines a global coordinate system on V. That defines a
C™-structure on V which is independent of the choice of the hasis (because different
bases have C°° transitions on the overlaps)

Example 1.2. The n-sphere $* C R**! defined by

ni+1
s” :{(m1,<--3mn+l) EIR”+1 Z.Lf =

i=1

1},

1s naturally a manifold. Probably the easiest way to define a (®-atlas for S™ is by
projection onto the hyperplanes z; = 0. For example, for n = 2

project upper-half sphere onto ry-plane.
Solly = {(&,y,2) € 5% : 2 > 0},
$1: UL = R, ¢y(2,y,2) = (a, ).

This atlas for 52 requires G charts.

T A wwj
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We can though be more economical mour choice of atlas by using first two charts
via the stereographic projection atlas. One takes the charts 5™\ {(0,...,0,1)} and
stA{(L,0,. .. ,0)} and the projects via lines emanating from the north and south
poles. For example, for n = 2

z
P
.f/
f/
K e e
Y e
X
# .
N
7
X

The details are left as an exercise for the reader.

Example 1.3. The torus

42

can be two charts of the form
U=(0,2m) x (0,2m)
#(8,9) = ((a+ 7sin) cos , (¢ + rcos ¥) sin ¢, rsin ?).

This 1s an example of a surface of revolution —obtained in this example by rotating
a copy of §! around the z-axis.

Example 1.4. Product manifolds.
If M and N are differentiable (€'°°) manifolds of dimension m and n, then the carte-
sian product A7 x N has a natural C™ manifold structure with atlas Ayxn =
{(Un x Un,dm x ¢n) - (Unt,dn1) € Anr, (Un,dn) € Ay} where Apr and Ay
are, respectively, C atlases on M and N.

In particular this gives another construction of the C'®-manifold structure for a
torus 7% = S* x S' —and, more generally, for an n-torus 7% = S x - x SL.

n copies

s



8 SIMON SCOTT

Example 1.5. Yet another constrnetion of the (n-)torus is given by taking a quotient
of R?™. Let wy,...,ws, be vectors in R2? linearly independent over Z, and let T be
the lattice defined by

FZ{T’-1w1+-'-+nznw2n LN EZ}.

So v1, vy € R®™ are equivalent mod (') iff »; — v, € I'. This defines an equivalence
relation and the set of equivalence classes is the quotient space torus

T" = R*T.

T™ 1s given the quotient topology, so U € R?"/T is open if and only if Y (U) c R*
is open, where 7 : R* — R?*/T is the quotient map. In particular, because R*" is
connected then so is R*"/T. Further because 7 is surjective on compact subsets of
R?" then R** /T is compact (—these are hoth consequences of the quotient topology).
To see the manifold structure, let I/ C R*® be an open set such that no two points
are equivalent mod I' —so U/T' =2 U. Then 7(U) is open and 7 : U — U/T is a
homeomorphism. A chart on T is then defined by (m(U/),#~1). Covering all of T"
by such charts it’s easy to see this defines a C°° atlas —the transition functions are

constant and hence C*.
A diffeomorphism of T™ as defined here with 7™ as defined in Example 1.4 is given
by

()\,[A, . ,I/) — (6277’:“, 527”'-“ 8211'1'”)-

yoeeey

Example 1.6. Real projective space.
This is defined as

RP™ = { one dimensional subspaces of R"*! }
=R\ {0}/,

To see why this has a natural C° manifold structure we proceed in a similar way to
Example 1.5. Define the quotient map ‘

T R {0} — RP™

7(«) = 1-dimensional subspace spanned by = = (zo,.-.,zn).

Using 7 we give RP" the quotient topology so that I/ ¢ RP" is open if and only
if #7%(U) is open in R™*! in the metric topology. So 7, by definition, is continuocus
and RP" is Hausdorff. Because mj, : S — RP™ is continuons and surjective and

S™ is compact then 7(S") = RP™ is compact. To prove that BP® has a manifold
structure we define homogeneous coordinates on RP™; if w € RP™ then w = 7(z) =
. ,."cn)) for some z € B**! (non-unique, of cou rse) then (zq,...,z,) are said »
,&7,) are another

71'((.170,.. ,

to be homogeneous coordinates of m(z) = w = [y, ..., x,]. If (#),...
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set of homogeneous coordinates then ©f = Az; for some A € R\ {0}. Clearly one has
a(z) = x(px) for any p € R\ {0}. Now define {(n + 1)-charts for RP"* by

Uy={weRP":w=rg,...,7)and 2o 0} a=0,...,n

and
¢y Uy — R?,
ballza, ... 2a]) = (%:,ﬂt:—;l,%”%) -
Clearly ¢4 is a homeomorphism and ¢, 065~ " is a diffeomorphism for «, 3 = 0, ..., n,

and that defines RP™ as a C*°-manifold. An instructive exercise 1 leave to the reader
is to prove that the map

1. ql \ T ¥
RP®— 5 [z, 4] — ((Tz oy (gt y2)1/2>

is a diffeomorphism.

Example 1.7. Grassmanians.
Real projective space of Example 1.6 is a special case of a Grassmanian manifold. We
define

Gr;(R™) = { k-dimensional subspaces of R" }.
Thus each point of Gri(R™) parametrizes a k-dimensional subspace of R". Clearly
Gri(R") = RP".

There is a Grassmanian for each & = 1,...,n and Gri(R") is a C* manifold of
dimension k(n — k). The €™ structure is defined in a similar way as for RP™, but
I shall omit the details. Grassmanians play a crucial role in vector bundle theory,
representation of compact Lie groups, and in (geometric) quantization.

1.2 Tangent Bundles and Vector Fields.

Everything we do liere is answering the question: how do we talk about vector
fields on curved space, ie on manifolds? We know what a vector field is on R", and,
in answering this question, one eventually concludes that when it is not possible to
describe a vector field on a manifold in terms of a vector field on B™, then that
precisely reflects the topology of the manifold (after all topology is all about how
manifolds differ from R™).

Recall that by a vector field on ®* one essentially means a map R® — R™ that
associates to each point of R™ a vector in IR™. Moreover, each such vector may be
realised as the derivate to some curve in R" passing through that point. One often
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Z Curve

'/ Tangent fine
/ -

- Tangent subspace

refers to such a derivate as a tangent vector to the curve and which hence defines a
tangent line to the curve.

If we translate that line in a parallel way so that it passes through the origin of
R” then it defines a 1-dimensional subspace of R*. By considering curves in differ-
ent directions one sees that there is actually an n-dimensional vector space of such
derivatives or tangent vectors associated to each point of R™. But now it is getting
a bit confusing because I referred to the tangent space to a curve as a subspace of
R", so presumably the space of all tangent vectors is a subspace of R, but because
that space (of tangent vectors) is equal to R™ then the space of all tangent vectors
at a point of R™ is R™ itself. Well, of course, the point is that one must distinguish
hetween the vector space defined by tangent vectors to a point of R™ from R" itself. It
is distinct from, though isomorphic to, R". To do that we make the following observa-

tion. Let = € R® and ¢ : Rt — R™ be a curve with ¢(0) = z, ¢/(0) = v = (v1,...,vn).
Then given any smooth function f € C*°(R") one has a directional derivate
d af of |
— 1 =Vfrev=v1— . .
(itf(a( ) =0 feev=mw Ay II toot Oun l: (2.1)

where ¥ is the usual gradient operator. So we see that one may regard tangents to
curves as acting on differentiable functions on R” in the sense that

v=d'(0): C*(R") — R!

WE) = g e

duy ot

. (2.2)

T

T

That is, we identify the vector
v=uve + -+ e, €R"

with the first-order differential operator

s

d . 100 n R 1
gus| CT@E) — R

+...+vn

T

T

DR
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That is we identify the vectors

&
Bm

€ ¢

Fis
If you like, this is a ‘quantization’ of the elementary idea of tangent vector as a
derivative to a curve. Clearly for each such derivative there is a map of the form

(2.2) and the two Interpretations are equivalent. In this spirit there we may define
the tangent space T to R™ at = € R” as the vector space over R spanned by the

n-veclors ,
{ : }
Ouy N

Well, that is certainly a step forward, we now see that a tangent vector is something
that defines the derivative to a given function in a direction defined by the tangent
vector —ie a directional derivative—— and so il is clear that T3 is an n-dimensional
vector space associated to & € R™ but distinct from R™. However, we can do better.

o
' Ouy,

)
T

We note that each #"'I and hence the vector v in (2.1) satisfies two basic properties:
X

(P1)
(P2)

v(f +A9)(x) = v(f)(x) + M (9)(x)
o(f - )(@) = F(2)o(g)(#) + v(S)()g(2)

(linear)

(derivation).

These are, 1n fact, characterizing properties. More precisely, we can give the space
of linear derivations (ie operators v on functions satisfying (P1) and (P2)) a natural
vector space structure by defining

(v1 +v2)(f) = vi(f) + vl f)
(A)(£) = Mwu(f)).

(2.3)
(2.4)

We denote this vector space of hinear derivations at = by T, R". One has the following
cructal result: 7 o

Theorem. There is a canonical isomorphism
n
T R" =T,

I shall not prove that result hiere since we will not need it, other than as a guide
for how to proceed. [ should also mention 2 points I have glossed over:

(1) We should really think of linear derivations as defined on ‘germs’ of functions.
These are equivalence classes of functions which agree on a neighbourhood of
@ € R". That, however, while technically accurate is not helpful, and for all
relevant purposes it is enongh to consider derivations just on functions.

(2) Tt is enough to consider derivations as defined on functions which are ¢
i a neighbourhood of the point # € B” in question. But again that is a
refinement that it is irrelevant for our purposes here.
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This identification asserted by the theorem is a crucial observation. It is not just
mathematicians playing abstract matheatical gares, but underlies the essential idea
of how to do calculus on manifolds and eventually gauge theory. The point is this,
we see that the tangent space to & € R™ can be characterised in a purely intrinsic
or global way in terms of derivations. This characterization is intrinsic\global in the
sense that no additional choices are necessary to state it, no coordinates are needed.

_a

The characterization in terms of the familiar derivative operators ¢ - ' } involves a
i

‘. . . . . I . -
canonical basis for 7;IR". That is, each linear derivation can be canonically identified
as a linear combination of the vectors % That is
important for telling us how to define tangent spaces on abstract manifolds, because
there we do not usually have a global coordinate system and so the only possible
type of definition is an intrinsic one. Ouce we have the intrinsic definition we can
investigate what tangent vectors look like locally relative to some local coordinate
system. Anyway, let us make the following definition.

—once we select this basis.

Definition [2.1]. The tangent space T,R" to R™ at # is the space of linear deriva-
tions at  (ie (P1), (P2)) with the vector space structure defined by (2.3) and (2.4).

Once we choose the canonical coordinate system (uj, ..., up)
on K" an element v € T,IR™ can be written as

a

for some ..., a, € RL

Because definition [2.1] is intrinsic we can copy it straight away to an arbitrary
smooth n-manifold M.

Definition [2.2]. The tangent space T, M to M at m € M is the space of linear
derivations defined on C™ functions on M (or near m) with the vector space structure
defined by (2:5) and (2.4).

So that is ﬁné,;but at this point we caunot repeat the statement (1) above for M.
Our next task is to investigate the analogue of (1) for M.
Qur first observation is the following.

Proposition [2.3]. Let M and N be C™-manifolds and let v : M — N be a C*°-
map. Then there is a natural linear map

d Ty M — Ty )N
defined by

dy(v)(H)((m)) = »(f o P)(m),
wherev € T,,, M.

Procf. We must show two things.

1. dy(v) € TymN, for v € T, M,

2. di is a linear mapping of vector spaces.

i e e s S e B
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proof of 1. We have to show that diy(v) is a linear derivation on N at ¢(m). That is

a. d(v)(f + Ag) = dp(v)(f) + Ady(v)(g)  f,9 € C(N)
b. dp(v)(f - g) = fd(v)g + gdip(v)f.

To see {a),

dP(W) ([ + Ag)|y(my = v((f + Ag) 0 9)(mn)
=v(foy+ Agoy)(m)
=v(foy)(m) + Av{g o y)(m)
= () m) + (o) g)(m).

by (2.3), (2.4)

To see (b),

dp(u)(f - 9)ly(m)y = v((F - g) 0 #)(m)
=v(foyp-go)(m)
=fod-v(gow)(m)+v(foy)(gop)(m)
since v € T,, M
= f(ip(m)) - d(g)(m) + d(f)(¥(m) - g(¥(m)).

Proof of 2. One has

dp(vy + Avs)(£) = (v + Avy)(f 0 ¥)
= ui(fou)+ Mau(fo¥) by (23)
= dy(vn)(f) + Mp(w)(f). O

The basic property of the map di is the following.

Proposition [2.4]. (Chain Rule)
Let M, N, X be C° manifolds such that there is a conmutative diagram of smooth
maps

L3
M — N

Then the diagram

diy

,I;’HM Tyb](m.)ifv

idl ldwg

T M Ty X

difry
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conmmutes.

Proof. We have to show that for v € T, M

dip3(v) = dipg o dyp1(v).

But,
d3(v) f(s(m)) = v(f o ¥3)(m) = v(f o Y3 0 Y1) ().
Since
d‘d)l(ﬂ) e T¢1(ﬂ1)N’ then (]dlg((l‘lf)i(v)) S T,/,,_,o,’!,l(m)X = T¢3(ﬂ,)X
with

Ao (dipL (V))(F)(a(m)) = dypr(0)(f 0 4p2) (1 (m))
=v(foyzoy)(m). O

So now we know at least formally a way of moving between tangent spaces of
manifolds. However, to understand T,,, M we need to relate it to what we know
about, that is, to T,R™. To do that we shall use a local coordinate chart (U, ¢)
around m € M. So ¢ defines a diffeornorphism

¢ VCR —UCM
and hence a dilferential vector space map
d¢_1 : Tg,(m)ﬂ%” —_— TmM

We need next the following result.

Proposition [2.5]. Let ¥ : M — N be a diffeomorphism (or local diffeomorphism
around m). Then
dp - T M — Tyim)N

is an isomorphism of vector spaces.

Proof. We know from [2.3] that dv is a homomorphism, so we just need to show dy
1s bijective. But that is easy, if ¢ is a diffeomorphism then so is v N - M so
Yoy~ =9l oy =id. Hence from [2.4]

dfodp™ = dyp Lody = d(id). (2.5)
Because d(id)(v)(f) = v(foid) =w(f) =T -v(f) (I =lidentity vector space map) for

all f € C(M), v € T,,(M), then d(id) = I. So from (2.5) di has a 2-sided inverse,
and that completes the proof. O

In fact, there is a partial converse to [2.5] (which I shall not prove here}.
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Proposition [2.6]. (Inverse Function Theorem)
ifdy - TmM — Ty(nyN is an isomorphism, then v maps any sufficiently small open
set {7 around m € M diffeomorphically to the open set ¥{U) around (m) in N,

Corollary to Prop. [2..5]. The linear map
dét: TomyR" — T M
is an isomorphism. In particular, T,, M is an n-dimensional vector space. One has

T M = d¢™ (Ty(m)R"). (2.6)

Proof. The only point in need of justification is (2.6). Thai is, we nmust show that
d¢ ™ (Ty(m)R*) does not depend on the ‘parameterization’ ¢~1. So let ¢ . U/ — V!
be a second chart around m € M. Then ¢ o ¢~} maps sonte neighbourhood V of
#(m) diffleomorphically outo a neighbourhood V’ of @'(m). The conmntative diagram
of smooth maps between open sets

¢—l

—— U Ny’

1%
] sy

diffeomorphism -
Vf
_—
¢F 0¢—]

i}

gives rise to a conmutative diagram of linear maps

id

TmM _— TmM
d¢“TE E*dg&”}
n A mn - s ™ ~ BN
Lo R ey TomR =R

and
image(dg~1) = image(d¢' ™).

Hence T, M is well-defined by (2.6) (it is independent of choice of ¢). O

However, what does change with different choices of chart ¢; U, - Vi C R"
around m is the basis of T,, M. That is, for (U1, ¢,), defining a coordinate system
(z1,...,2,) around m, there is a canonical basis defined for TmM by

=d¢; 7! 9| i=1,... ,n.
m At | gy m)

8.’1?{

(2.7)

So for f € C™ (M),
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a a . _
8r; ()= Jdu; (fog™ '
"t lm 2 A:P)(m}

bl

(Note that because 7> 7| are a basis for
i tim

T.M)

We then have that for ¥ : M — N, if we clioose coordinate charts (U, ¢m),
(Viv,7v) aronnd m € M and #(m) € N, respeciively, that T, M and Tym)N have
canonical bases (or ‘frames’) and hence dyp : T, M — Ty, NV is given by a specific
matrix relative to those frames. To see the specific form of dy the following lemma
is very useful.

is a basis for Ty, ¢, )R"™ then the
$1(rn)

Lemmma [2.7]. Let v € T, M then there exist uniquely numbers vi(m),. .., va(m)
such that
0 ad
v = v1{m) <z + -+ va{m) < ,
1 b Tn |,
where (z1,...,y,) is the coordinate system defined by a chart (U, ¢), and
vi(m) = v(z;). (2.8)
Proaf.
v(w;) = Z v;(m) —9— (z:) = Zvj(m)—-a——(;r:i o™
T a.’lfj N 8u,~
H 7 J
Ou;
= Z vj(m) ;—Z}- N = Zvj(m)é,'j(m) =y(m). O
i : ' i
Proposition [2.8]. Let ¢ : M — N be as above with coordinate systems
((]rna'rly"'vmn) and (VN:.UI»---)UJ)
around m € M and ¥(m) € N. Then relative to the canonical hases
d L9 §
dw(,_ )z (o) | . 29
Tilm ; s ’ )m Ay d(m) ( )

for some numbers «;. Now jnst apply Lemma

Proof. dy ((,‘: I ) = Zj tj %
[2.7]. O

¢{rn)

The matrix J = (M) is called Jacobian of the map 3 with respect to the

[EX

given coordinate systems.

T R
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[n summary, then we now have achieved a manifold analogue of the local statement
() above. We have that the tangent space to m € M is identified locally as T, M =
dd)fl(Tqﬁi(m)ﬂRn)’ where ¢; : U; —+ R™ around m, mdependently of the choice of ¢; —

what does change with different ¢; is the basis of T,,, M. We obtain the basis E‘Z—I =

-1 { &
dg: (d siim)
back” by d¢p; ! from Ty )" To say it again, choosing different (U;, ¢;) does not

o

Notice also that the derivative {)L;,l {(f) of a function f on M is actually taken in R”.

N . .
) with respect to (I;, ¢;), so -ai?r—! is a vector m T,, M “pulled-
im

a
LA A
m n

affect the identification of T,, M, but it does change the basis { %

Because the ¢, are local diffeormorpliisms and f depends on the paiching functions
i 0 ¢j'1 the 1dea is that this will reflect the topology of M.

For this to be a sensible definition we need to know that when we write v € T,, M
using a basis of T,, M defined by a local chart (I/;, ¢;) then »(f)|,, does not depend
on that basis\chart. In other words, we need to know how the local representations
are related —and they must be related precisely becanse u{f)|  is intrinsic. If we
choose 2 coordinate charts (U7, ¢;), (UU;, ¢;) around m € M with local coordinates
(z1,..-,%Tn) and (y1,...,¥n), so that we have two bases

&) J
Si = —_— a . = —_—
{ B m} and & { n

for T, M, then any v € T,, M can be wrilten nniquely

d

rrco Ty
m dz,,

o 1)

IR I
m 03’" mj

, some &;,1; € R,

TL. .)
U:ZE‘(T(;

1=

I

= W o
m = dui

80

T a
Y b ——(fod™)
k=1

3uk

n (,_)
= E M = (
Juyg
k=1

fog;™h)

™ L

for f e C™(A).

1 leave it as a straightforward exercise to the reader (using Lemma [2.7]) to show that

( i \ ayy ETS &

gm aa
7 } ST g LSS
‘\ In Ers e n ’fn

That is, the change of basis matrix from & to & is the Jacobian
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e

Now let’s talk ‘tangent bundles.

Well, so far these are all quite simple observations, involving not much more than
elementary linear algebra. Nevertheless we have actually deduced some profound
facts. This becomes clearer when we look at globally defined derivations, which are
described by the tangent bundle of M,

TM =[] TnM.
meM

Whereas, T;, M represents only local information about M, the tangent bundle TM
contains global information, which is why we can deduce facts about the geometry
and topology of M from TM. Explaining why TM is a manifold (of dimension 2n)
leads us to the prototypical construction of what is more generally called a ‘vector
bundle’. We proceed first by choosing a coordinate chart (U/1,¢1) on M. Then we
have the tangent bundle over Uq,

TU = TMly, = |J TwM =17 (), (1)
mel,

where T : TM — M is the projection map that takes v € T M tom € M (ie it tells
you which tangent space v is in). From our observations above we have a canonical
diffeomorphism

11[)1 Zﬂ'_l(Ul)——'rUl x R™, (2)
For a point of TU; can be written (m, v}, where m = 7(v), and the chart coordinates
(z1,...,z,) identify uniquely n real numbers £;(m), . .. ,En(m) defining v, ie v(m) =
>.; Ei(m) 3‘1—-1 . So the map 1 is defiued by

(m,v) — (m,&1(m),...,E(m)).

(Check that it 1s & diffeomorphism!). Moreover, the identity (1) tells us precisely how
the maps ¥, : 7~ }(U1) — Up x R™ and 13 : 7~ 1(/3) — Uy x R™ are related over the
intersection U3 N /5. That is, we have a map

U Ny — GL(nR)

m— d(gz 0 ¢1_1)‘ &«

= g1z(m)

m

such that

m(m) £1(m)
: = g12(n) :
(1) £.{m)
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A poit where the v. field

M "vanishes" (ie = 0)
?:5-___},__
— N 1 j 7
. A1 X =~ w 12 -
~ia !2/ (= e — O - =
IETO -
:\/ section P TN
R S o ! N
X 7t
¥ Z x M

a and dare points where the vector field
vanishes, ie X(y}=(,0) =a; Xfz)=(z.0)=b.
This teli us about the topology of M.

The transformation g;2 is called a ‘transition function’ by mathematicians and a ‘local
gatge transformation’ by physicists. In particular, using the identification (2) we get
a good C*° manifold structure on T'M.

In summary then, the tangent bundle is a manifold TM canonically associated
to M with a natural projection map 7 : TM — M, and for each chart U; on M
there is a diffeomorphism ; : 7~ 1 (U;) — U; x R™, and the different diffeomorphisms
corresponding to different charts fit together over the intersection U; N T/; by the
transformations g; : U; NU; — G L(n; R).

Notice that the transition functions g;; satisfy

(3.1) gik(m) = gij(m)gje(m)
(3.2) gij(m) = gja(m)™}
(3.3) gii(m) = identity I,. (follows from (3.1) and (3.2))

In fact, given C maps S; : U; — m;(U;) and g;; satisfying the conditions (3.1) — (3.3)
then we have the technology to rebuild 7M. T'll leave it to the reader to think how
to do that, but notice that the conditions (3.%) are essential compatibility conditions
—why? (see below).

Now the point of talking about tangent bundles is to talk about vector fields. Recall
that a vector field on R” is an object like Xg~(x) = ) i_; ai(x) T?%TL —that is, it
assigns to each z € R™ a tangent vector Xp~(z) € ToR”, in a smooth way, which
means that the functions o;(z) are C™. A more sophisticated way to say that is that
X is a smooth map Xun : R® — TR" such that 7 o Xy~ = Identity. We define a
vector field on M in precisely the same way, ie a smooth map X : M — TM such

that 7o X = Identity. So X assigns ‘smoothly’ a vector X{m) € T, M to each point
mof M.

Locally this means that over (U;, ¢;) X looks like
X(m)= 3 am) |
i=1 6-771‘ m

where o, : I/; — R! are C™ functions.
‘ In “bundle” language X is called a (C™) section of TM; that is, a section of TAM
1s a vector field on M.,
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Thus sections or vector fields have two equivalent descriptions:

(1) Global: A section X : M — TM of the tangent bundle.
(2) Local: A set of C™ functions f; : U; — R™ (one for each chart) such that

fi(2) = gij{z) filz), for z €N Uj and g;; = d(di o ¢; ') are the transition
functions.

In understanding that point one has met with the basic idea of gauge theory.
Indeed, the crucial point is the following. If we could cover M by a single coordinate
chart then for certain any ' vector field on M could be written as a C'* function
M — R™ defined with respect to the globally defined basis of TM induced by the
coordinate chart. That is, the coordinate chart defines a basis {%i } in each T, M

e
which varies in a smooth way with = € M. Moreover, precisely because M is covered
by a single chart then M is diffeomorphic to R® —by definition. To put 1t another
way, when it is not possible to write every C™ vector field on M as a C* function
then we know M has non-trivial topology. Thus M is topologically non-trivial when
there is a “non-zero obstruction” to the existence of n globally defined and linearly
independent vector fields Xy, ..., X, on M. That is, n smooth maps

X;: M —TM
such that
roX; =id (ie Xi(x) € To M)
and

{Xi(z),..., Xn(2)}

is a Dbasis for T, M, for each & € M. If they exist, the {Xy,...,Xn} are called a
trivialization of TM —they can each be described locally with respect to the atlas
{(U;,#:)} of M. (Called a global gauge by physicists).

Locally we may always take X;(z) = 5(:7.[ with respect to the chart (U, ¢), but the

above conditions requires this to be possible globally. Notice in particular that each
X;(z) must be non-zero, otherwise we will not get a basis for T, M, and that is the way
we construct the Euler number for M —ie the Euler number x(M) counts the number
of times a “generic” vector field hits the zero section (see the above picture). Thus
if x(M) # 0 we know that it is impossible to find n linearly independent # 0 vector
fields on M. x(M) can be calculated in many different ways and serves as a crucial
index for classifying manifolds of distinct topological type. This perhaps represents
ome of the most profound and beautiful areas of mathematics and its interaction
with physics. Physicists refer to n global linearly independent sections as a global
gauge for TM —thus a gauge transformation changes the global gauge to another
global gauge, ie it changes (smoothly) the basis in each tangent space T M. The
Euler number in particle physics parlance is called a topological quantum number.
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In general, however, x{M) is not sufficient on its own to tell if there exist n globally
independent vector ﬁelc_is orr M. That is y(M) =0 /= they exist —we only know
this obstruction to their existence vanishes, so they may exist. There are (n — 1)

- other topological quantum numbers associated to M, called Chern classes, and we

require all of those to be zero, to know their is no apriori obstruction. (Interesting
fact: x(M) = 0 whenever dim(M) is odd —S" for example!) The mathematical term
for “global gauge” is “(global) trivialization” of TM . '

As a brief summary then, the idea is that observers in different coordinate patches
can agree (in the overlap) that a tangent vector exists intrinsically and where it is
but usually they cannot agree how to describe it (ie what its coordinates are) thoug};
they do agree precisely how their different descriptions are related (ie the t.r,ansition
function).

So now let’s look at some examples. The examples I'm going to give here are all
essentially trivial, but I hope, nevertheless, instructive. First let’s be clear about what
finding a trivialization of the tangent bundle of a manifold means. It means

(1) F.ind n linearly ind.ependent C* maps M X TM such that 7o X; =1d
(1=1,...,n, n=dim M) or, equivalently, it means
(2) Giving linearly independent n-functions fi(-“) : U, — R” in each coordinate
(b
patch‘ U“ such ‘r..hat fi(“) = gabf,-( ), where gq : Us N Uy — GL(n;R) are the
transition functions.

Notice that in (2) if in U, N U, N, 1 give £, 1% and £ such that

A9 = gaf®  ad FY = g

then I.know that fi(a) and fi(c) also match-up —why? (Otherwise finding sections
would in general be impossible).

A wolrthwhile task at this point is to work out exactly why (1) and (2) are the
same thing. Of course, the conditions

.f;'(ﬂ) = gabf@'(b) on Ura n IJ&

are equations between column vectors in R™ and g(,ﬁfi(b) i1s matrix multiplication.
Note that each fz-(a) defines a map U, — U, x B" with 7, o f-(”) = 1d where 7, :
U, x R® — [J,, is the projection onto the first factor. i o

That means that each fz-(c) pulls back by the trivialization of TU, = U, x R®
to a sector (v. field) of TU,. These sections of TU, agree on the overlap regions
U.nU; by the computability conditions on the g, and hence define a global section
of TM (In particulfﬁ.r, note that if 7, : TU, — U, x R™ is the trivialization then
' (f,;(a)) = Tb“l (fi(u)). Couversely, any section of TAf has this form.

qu if we have a global trivialization we can write a vector field X : M — TM as a
function fx : M — R&”*, defincd independently of the coordinate charts ~—check this.
However, notice that the function fx depends explicitly on the choice of trivialization

of TM. (?h?fng‘in-g the trivialization will change fx. Thus the way we 1epresent
mathematical objects as functions depends on the underlying trivialization of the
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‘hackground’ bundle —that is a deep fact. Usually we hope to find some @lo_n_i%a_l
choice of trivialization that will associate a preferred function fx that accords with

the properties we might expect.
Anyway let’s look at a couple of examples.

Example 1. R" with a single chart (R™,1d). o .
We have essentially already dealt with this case above, but nevertheless it is instructive

to do it directly. .
For consistency let’s think of this as follows:

The canonical basis for Tn R™ at m € R™ is by definition 3
d N ( a ) _ 9 .
PR—— e ——— = I —_ = T = 1, vy m
oz |,, df (6”;’ I(m)) o |, ou; |,

where 1 have written I = id. So, as we would expect, it is just the usual basis for R"
with coordinates (global) z; = u; o I = u;. Given that our constructions are relat,lYe
to R™ it would be discomforting if this were not the case. Anyway, we easily obtain

the following, result.

Theorem. The tangent bundle TR™ of R is canonically trivial. That is, there exists
a preferred global trivialization '

TR" =2 R* x R".

Proof. Well, any element v € TR" can be written uniquely as

- 0
y= Zl)\i(m) —(E: R

where m(v) = m. So the desired map 1s given by

(note m € R™). 0O

v— {m, A1(m), ..., Aa(m))
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Thus under the above isomorphism, these elements of T;,R™ map to the canonical
basis e1 = (1,0,...,0),e2 = (0,1,0,...,0),...,en = (0,...,0,1) of R*. This is the
trivialization that is used in differential and integral calculus in R™. Of course, we
could easily modify it to
; 0
oi(m) = f;(m) —
{m) = 5im) |
where the f; are C° functions on R". This means derivatives and integrals and so
forth would have different (but correct) answers than the usual ones, but the two
answers corresponding to the two different trivializations are precisely related by the
transition functions —try some examples!

The above trivialization of TR™ is the natural choice because {(R™,id)} is the
natural atlas for R". But because we want to see our general constructions in action
we could consider R™ with the most general atlas —given that R™ is endowed with
the metric topology. So we take the atlas

Example 2. A= {(Us,¢,) :a € RT}
where R* = {r € R:2 >0} and U, = {z € R" : ||z|| < «} with || - || the Euclidean
norm, and ¢, : U/; — R™ is a homeomorphism such that ¢, o d;7' R — R" s
a diffeomorphism Va,b € R*. Initially it may seem a rather formidable problem
to look for a trivialization in this case, but actually it’s very easy. Think about
R" geometrically: it’s not hard to see that the tangent bundle can be trivialized by
choosing n-vector fields parallel to the axes. E.g. for R?

To make that precise we can define such vector fields by identifying the flow lines.
Take the map, for example,

d R — R e=(eg,...,6,...,6) ERTTD (0 means “omited”)

o(t) = (e1, 2, ¢ s €n)
ith position.
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Exercise. Show it. (In fact, »F)(m)(f) = é;f: )
. . 77 .
¥ Becatise the curves are C™ this defines n linearly independent C°° maps
! [ N B ! ;
- - = - g U(z) M —TM, M= R"
\ ! o f I
i i ' 1 | r and hence TR™ is trivial. Notice that the only point at which we have used the
ﬂ[” ,,T»—» ‘T»f:» 1 = manifold structure of B" is in the assertion that the curves are C°°.
, | i .
7”“’ R Y"' ) I' B Exercise. Show the curves o - R s R™ are G with respect to the manifold
; .
s (B - e structure A.

Now we can also see how this works with respect to the local trivializations

TU, — Uy x R”

This is the line in R" parallel to the i*" coordinate axis passing through the point v (m,a (m), ... e (m))

d
_ -1
™m - d¢“ ( i |¢u (m)) -

} for T,,IR™ there is also the basis
1

d
=1
= d¢, ((%i - )} :

So we can write the vectors v(*}(m) € T,,R™ in two different ways:

(611627"'1 9 J"'?E”)'

i** pos?. where 7(v) = m, and

= d
v=Y aim) E

m=1

For n = 2, these are the lines:
. d
with —

(7 &y

m

Jdr

In the overlap [7; M U, besides the basis {_a_

for -4, and for -2

v (m) = 3¢ (m) ?;z_j m
and for some &;(m),{;(m) € RL.
o (m) = ¢ (m) 5

Now define the corresponding vector field along agi) by

_{.1
dt

m

sty € TR Voo = do) (

t) So we have maps

derivate along B*.

Ja
/ n . - 3
So we obtain a vector field on ", 1 nd Vg — R m — (&1(m), ,§n(m))
v R — TR", U(i)(m) =Y € InRR* Uy LN m— (Cl(m), e ,(n(m))
where ¢, € are the unique numbers such that m = ‘Tgi)(t)- . and, by definition of gap = d¢, 0 dy™ ", we have in U N T

It is also easy to show that this defines n-linearly independent v. fields ie

{1)(1)(111), o ,n(“)(m) 1

is a basis for T, R". as required. So from either the dire;t. point of view, or by doing it locally we have

Fa(m) = ga(m) fo(m),
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Theorem (2). The tangent bundle TR™ with the atlas A for R" is canonically trivial,
ie there is a preferred diffeamorphism

TR 2 R™ x R™.

Of course, we can change the trivialization by multiplying the sections o) by
smooth non-zero functions.

For interest we could take the case, for example, of R! with 2 charts U; = (—o0, 1),
U2 = (—I,OO), S0 Ul N []2 = (_11 1)
Over U; we have a trivialization (for v(m) # 0)

TU; — Uy x R, w(m) — (m,a(m)), where v(m) = a(m)-—é—' ,
T m

over I/o we have a trivialization

a

TUy; — Uy x R, w(m) — (m, B(m)), where v(m) = 3(m) By

’
m

8 _ -1{ 8 a
and here %‘m = d¢ (a—u]"bl(m)), e
transition function must be

= dgy7? (:’i%iqb;(m))' Clearly then the

m

alm

)
(m)

(note 3 £ 0).

Jz =

TDA

To see that fits with our theory note that

d % Oz a
v(m) = (1(m) ;')_'l_l = ﬁ(m) é—;—Tj = ﬂ(m) 5% d_T.
So,
, D . , ar
a(m) = 3(m) ;—y ] , e ;E::; = 'aTJ m = g12{m) (ie d¢y o d‘ﬁz'l)

as usual.

Try this with some test functions, e.g. ¢1(m) = m?, ¢y(m) = e ™. (The reader
should find the above just amounts to the change of variable formula (ie Chain Rule)

o 1ldi G 8 B 22
in 1-dimension —what are 5| and By 4!

Now let’s look at the simplest topologically non-trivial manifold.
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gxample 3. The unit circle S1.
Of course 5! = {z € R? : {|z|| = 1}. There are many ways to give S* an atlas, but

_here I shall move between the following 2:

Atlas 1
Uy ={(z,V1-22):z€(-1,1)}, dilz,y) ==
Uy={(z, 1=z :z€(-1,1)}, dzz,y)=2
Us={(V1-9%9):ye(-11)}, dalz.y)=y
Us={(-/1-9%,v):ye(-L1)}, ds(z,y)=v

V1 = {(cost,sint) : t € (0,27) }, 1 (cost,sint) =1

Vo = {(cost,sint): t € (—%,%)}, wha(cost,sint) =L
Well perhaps the first task is to explain why these atlases define a manifold structure
on S!. But that is clear, becanse, for example, in I/ N U3 one has ¢ o és Y y) =
/T =92 which is certainly C. Also (¢, 0 d3~ ') (z) = dso0¢ ' (z) = VI —-a is
C* and hence ¢ o¢3~" is a diffeomorphisin (since obviously it is a homeomorphism).
Similarly, the other transition functions are G diffeomorphisms and hence Slisa
C*-manifold. (For atlas 2 it is even easier to see S' has a manifold structure.)

Notice also that S! also has a natural group structure under rotations and reflec-
tions. That is, if we write e®* = (cost,siut) then it is clear that

. e = () = (cos(t + 5), sin(t + ) = (;0:: —sznss) (<) e 8,
and also that et = e~ € S1.

With both group and manifold structure S is written U(1), which is the simplest
example of a compact connected Lie group (since the group action is C*). By defi-
nition, U(1) = {z € C\ {0} : |z} = 1}. In fact, the group action is not only C* but
it also has C° inverse. Another way to say that, is that

et 51— st (U(1) — U(1))

E
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is a diffeomorphism. To see that is true we must show that
-1 -1, -
o fé; and ¢, g7

are O functions B! — R! for all i,7 = 1,2,3,4. I leave it to the reader to check
that elementary fact. Let DiI(S!) denote the space of all diffeomorphisms of S?.
This is an infinite-dimensional Lie group and by our observations we have:

Proposition. U(1) is a subgroup of Diff S*.

In fact, the quotient space Diff S?/U(1) plays an important role in conformal field
theory and in string theory in theoretical physics.

(To see Diff S! is infinite-dimensional note that any element for this group has a
Fourier series descomposition f = Y 7o__ cpe't? = 527 a, cosnf + b, sinnf for
suitable aj, by, cx, so requires an infinite basis {€**?}.)

Now since S! is a ¢ manifold then it has a tangent bundle T'S* associated to it.
We have

Theorem 3. TS! is trivial. That is, there is a diffeemorphism

TS =~ gl « R,

R

Proof. Perhaps the first question to answer is, what is 7,57 Well, we saw in the
theory that

T, S' = dg; ™ (Ty,)R")

where z € U;, and that this is independent of ¢;. So we could check that directly in
this case.

0

Lot yt‘f
. k3l
£k sectiun —> h
| ] SF
* EV Y
RS ];si
7
{
bl
V' J:\‘ - SJ

Graph of a trivialization. a € T, S' defines a ‘generator’ for the line 7,5,
ie a coordinate ——any element. of 7;,S' can be given a coordinate relative
to it, (a is the lenght of tangent vector V, at z).
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Let’s do this for the second atlas to begin with. Take # € (0, %) Then

P17 H(B) = (cos 8, sin 6)
and
dyy "t TR — Ticosesine)S "
Well, a typical element of TyR! has the form

d
Ve =a o

[

and dv; ' takes this to the element

- d )
diy ' (ad—g) € 7ﬂ(coslﬁ',sinfi')“gl'

This acts on f € C*°(S!) by

- d d .
dapy ™ (a@) (f)= a@f(cos @, sin 9). (*)

To see what’s going on geomectrically note that because we have defined St as a subset
of &% then we can express any element of T(cosg,sing)Sl n terms of the cannonical
basis vector 2 o of T(Cnsgws-mg)m{g {u; = &, vy = y). That is,

duy? dusg
d 0 a
doy ™ a— ) = Ay — + Ay—o.
h (udﬁ) lau.l + 10?.@2

To find the numbers Ay, Ay we first, as usual (Lemma [2.7]) plug in u; and uy; so for

)‘1)

_ d { _
A o= dyp; ! (rxa—é> (u)) = (y(;—g(ul oy 1)

d .
= (xd—g(ul(cos g,sind))

i ‘
= cx%(cos #) (by def* of u; as a function)
¢

= —asinf.

Similarly, Ay = @cosf. So

{ a a
dipy 1 J—( = —sinf— os fl— | .
diby (u d()) 1o ( sm@am + cos Fu
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i

) /w(cosa,siuo)

The relation with (¥) is simply the Chain rule (implicit differentiation). Now because
8 is a constant any vector in Ticos 9,5"_1]9)51 is determined by the number a (its length).
What 8 tell’s us is the direction of the tangent space (line) in R*. That is, the tangent
line is the line

to = {a(—sinf,cos0) :a € R}

which is the line in R! parallel to S at § and passing through 0.

So that makes good sense. Note that :4 is independent of t;: we get precisely the
same line with 3.

The reader may like to do the same thing for the first atlas in (x, y) coordinates.
You will get

Ao~ i) a2 ___I___a_) _ ol
2 “Bu) " duy, Vi-z20uz) 0z
é] y a a 0
-1 — ] = —_—— —_— = g—.
A2 (a(‘)u) o ( 1 =y? 0w + aUQ) dy

(The tangent line is ¢(5 ) = {a (1, 1——I

IZ
line as ¢y for corresponding 6.)

Because the transition function is

912(?{) = d(¢51 o ¢2~1)
we see that

O ~——
u

g12(y)der ™! (sz%) = dg,! (

)

1e

) :a € R! } which you can see is the same
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o
ay

dz

g12(¥)

__as predicted by the theory.

Go it remains to trivialize TS'. The easiest way to do this is to observe that the
vector (;ry> is orthogonal (in the Euclidean sense) to the vector (:) So simply
define the vector field

\_.— —_ s T .
vz, y) = y@ul + Taug

Locally: For Uy, this is

J é] d
vig, ) = ~vi—-a2?-— +0x =—y1—azi—.
(2,9) ‘ Ju; Tf)uz ! dx
For Us, this is
a %) e}
vz, y) = —yr— + V1 -y = /I =y
E duy Oun Oy
Since the local transition function hetween Uy and Uj is
y Vi1—a? y
g3 =——=- =
T T 1—y?
H we see that the local functions
fi U — RY hHz) = —v1— 22
f3:Us — R, fsy)= Vi-#

give the local version of this trivialization.

Because they are O™ functions and v is C™ (why is v C°7?) then this will do
nicely. O

Observe that now any vector field § (C™) on S! can be written

i=f;v

ie v(x,y) = fi(z,y) -v(z,y)

for sotne (0> function f; on S1. So relative to the trivialization v the vector field is
uniquely represented by the function f,. That is what we mean by a global trivial-
izatior; and that is what we mean by a global gauge for T'S'.
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Exercise. Let [¢] € RP?, so [1] is the point representing a line ¢ in R%. Show that
(i) T RP! = Hom(¢,et).
(i) TRP! = RP! x R! (ie trivial). Try doing this directly first, then deduce it
from the diffeomorphism RP! — S we constructed earlier.
(iii) Deduce that T(S? x S!') is trivial by constructing an explicit trivialization
using the trivialization of T'S! given.

In summary, the tangent bundle to M is a manifold TM with
canonical projection map 7 : TM — M, such that for each lo-
cal chart I; on M there 1s a diffeomorphism
¥y :ﬂ'_](U,')—PUi x R™ W_I(Clyi):TMIU]
and on restriction to m € U;,
Yilm : 77 Hm) = Tu M — R™ x {m} Proil g
is a vector space isomorphism. The different diffeormnorphisms
correspond tc different charts fit together over the intersections
U; NU; by the gauge transformations
97 UinU; — GL(n; R). {Gauge group)
We note that these transformations satisfy the following con-
sistency relations
(1) gi (m)gji(m)gri(m) =1 identity on U;NU; N U
(2) gi(m) = gis(m)™h (50 gii(m)=1)
In fact, given g;; on each U; NUj; is enough to define TM. (x)
Sections of T'M, or vector fields on M have two equivalent
descriptions:
1. Global: a vector field is a section X : M — TM (X smooth
and 7o X = id)
2. (%) Local: a vector ficld is given by a set of C°° vector va-
lued functions f; : U; — B™ such that f;(m) = g;;(m) fi(m), for
m € U; N U; where gij(m) = d(¢; o ¢; 1),

2. VECToR BUNDLES

The tangent bundle is a very special bundle in that it is completely determined by
M it is intrinsic to M. That is why 1t is the basic object of interest in general relativity
which is concerned with the geometry of M, and the geometry of M isencoded in TM.
However, in quantum field theory one is interested in mathematically similar objects
to TM, but which are ex-trinsic to M, they carry aditional data, corresponding to
the ‘internal symmetries’ of a particle moving in M.

Definition. Let 7 : & — M be a surjeciive map of manifolds whose fibre 7=1(m) is
a vector space for each m € M.

The map 7 is called a C° real vector bundle of rank n if there is an open cover
{U.} of M and fibre-preserving diffeomorphisms

Yo 17 (Ua) = &, = Uy x R (3.1)
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a-{m)

|
- J/ T éE

|
st u

m

which are linear isomorphisms on each fibre, ie

Valin) proj®
r~i(m) —— {m} xR* —— R*

idJ' Tﬂaﬂ

PYa(m) roj®
7~ 1(m) R {m} x R" N U

is a vector space isomorphism.
One often calls this construction a vector bundle £ over M.

It is immediate from the summary in sect. 2 that 7'M is a vector bundle with fibre
7~ 1(m) = T,n M. As with TM a vector bundle £ . M has transition functions

9 - Ui OU; — GL(mR) (3.3)
defined by
gi;(m) = Yi(m) o g5 (m)~! 1 R” — R". (34)
They satisfy

gij'gjk'gki:I OHU.tntﬂUk
gii =1 on U;.

(3.5)

In fact, given maps (3.3) satisfying (3.5) one may construct a vector bundle with these
transition functions. [Roughly: one defines

£=E/G

where E = M xR"™ = [}, U; x R" and G acts on E by defining an equivalence relation
by

(z,v) ~ (y,w) (z,v) € U; x R", (y,w) € U; x R*

if and only if
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y=z and w=g;(x)v]

If we relax our assumption that the fibre 771(m) is a real vector space and suppose
that 77 1(m) is isomorphic to C", then £ is said to be a complex vector bundle of rank
n.

A smooth section of £ is given by a smooth map
s: M — €&
such that

Tos=id  (so s(m) € &, = 77 (m)).

We denote the space of all such smooth sections of £ by C°(M;£). An element of
C* (M, &) can be described locally by functious

fi: Ui — R"
such that

fi(m) = gi;(m) fi(m).

Exercise. Prove it.
In particular, if we can arrange that all g;;(m) = identity then each section can be
written globally as a function. [g;; =1 = f; = f; over U; N U; € GL(n;R)]

In explaining what is meant by “arrange” we meet the basic mathematical idea of
“gauge transformation”. The point is that we do not really regard isomorphic vector
bundles as the same.

A homomerphism between two bundles & ,&; — M, called a bundle map, is a C
map f : & — &; which is a fibre-preserving map and restricts to a homomorphism
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M
m

flo 1 (1) = (€2)c- f is a bundle diffeomorphism if f is a diffeomorphism and f|_ is
an isomorphism of vector spaces; then f defines an isomorphism of vector bundles.

If £&1 = &» then we may formally regard an isomorphism of £ with itself as an
element of

G(£) = C(M, Aut(£))

(If & = M xR, then this is C°°(M, G L(n;R)).) where 7 : Aut(£) — M is the bundle
associated to & with fibre

lAut(Sm) = {space of automorphisms of vector space &y, } !

This is actually a bundle of (Lie) groups, not a vector bundle, though I shall not
justify the bundle structure here, G(£) is called the space of gauge transformations of
£. For practical purposes, an element. ¢ € G(£) 1s something that assigns a C* map

Go i Uq — GL(n; R)

to each coordinate patch U, of M over whicli £ is trivialized, (and this is all we will
need to know) such that the bundle defined by the transition functions

.&ZE = gagaﬁgﬁ~1 U N Uﬁ — GL(“;]R)

is isomorphic to £. In fact, we have the following

Proposition. Let &£, £ be vector bundles over M. Then & = &; if and only if
there are smooth maps

Jo 1 Uy — GL(m;R)
such that

1 2 -
95 = gagis ™

3 k o .
where géﬁ) denote the transition functions of &.

T
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Proof. This is an immediate consequence of the following diagram (Uap = Ua N Ug):

1Y Us) = 7 Y Uap) ﬁ’ 75 (Uap) = 75 (Uap)
|
%l lwa ¢al J%

Uaﬁ x R™® Uu._g x R™ 7 UQ.QX]R”’ Uaﬁ x R"

)
I Jap Jan i

Ua'@XIR" = UGﬁXRn — aﬁXE&” = Uy xR

Ja

That is, there is a bundle isomorphism if and only if the rectangle conmutes, ie

Joplls = QGE;E

so that
Jap = Jalapys” " O

Notice in particular that if we can find g, : Uy — GL(n;R) such that
—_— -1 _ .
ga,ﬂ - gaga'ﬂg‘ﬂ = ldentlty

then £ is trivial (and vice-versa) —because then all the local trivializations or gauges,
771 (Uq) = U, x R™ match up over the intersections U, NUs and hence define a global
gauge

| JUa) = | Ve x RY,
SO

E=a"Y(M)= MxR"

Corellary.

(1) Every criented real line bundle over a I-manifold is trivial. (ie dimM = 1 iff
M == S or R? or [, b) for some a < b. Then for every such line bundle £ one
has €= M x RY.) '

(2) Every complex line bundle over a I-manifold is trivial.

Proof. Exercise.
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/7 Uy
AN 5/
A
Voo

Example. In the §1 it is explained how to trivialize TSt using the vector field

a a
U(e,y) = _yc')_u: + TEE

On U, Ule,n) = VT PL,
On Us, U(z,y) = +/1— 3;2-%.

So the two trivializations on U; and Us are given by the functions

file,y) = —V1-22, fa(z,y)=V1-9%*

= =¥ =T

and so the transition function is

g3 = —2 = Andaz .
xr
and so in this case we take
Mz y)=-y  As(z,y) ==

Let’s look a bit more closely at the Jocal meaning of a gauge transformation. It is
given by a map (C™) in each bundle chart

fo : Uy — GL{n;R).

lts effect is to change the basis or ‘frame’ in each fibre over Uz. To see that, first let
us note the following.

Proposition. A local trivialization

e TR
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is equivalent to giving a gauge for &), —that is, n non-zero and linearly independent

sections S; : U — &, = =~ Y(U).
Proof. Given n such sections define ¢(v) = (m, ar(m),... ,an(m)) where
v = ay(m)Si(m) + - + an(m)Sp(m).
Conversely, given ¥, define S;(m) = ¥~ 1({m} x ¢;), where
{er, ... en}

is the canonical basis for R*. O

So over each U, we have a moving frame

mr— {s;(m),...,s.(m)}

—basis for 7=1(m) = &,. It is ‘moving’ in the sense that it depends on m € M, ie it

may not necessarily be constant.

That it is a crucial aspect in geometry and physics —it reflects the way the constant
frame is being twisted by an external gauge field; e.g. it accounts for the magnetic
field in electromagnetisin even though the bundle in that case is trivial.

The effect of the gauge transformation is to change the frame

F(m) = {es(m), ..., en(m)}
to
(*) (fo)(m) = (Zgil(m)ﬁz‘(m), - 1Zgin(m)ei(m)) :
i=1

Y i=1

J(m)g(m)

LA GAUGE TRANSFORMATION IS (LOCALLY) A CHANGE OF FRAME.]

So because we are interested in the effect gauge transformations have on objects
assoclated to a bundle (since they represent conserved quantities), we must analyse
in local terms (local formulas) the precise effect of such transformations. So perhaps
the first object to look at are sections (fermion fields) —one has:

Proposition. Let s € C*°(M, &) and s(f) denote s : U — &, written with respect

to the frame f, and let s(fg) denote s written with respect to the transformed frame.
Then

s(f9) = g™ 's(f)

Given a local frame f = {e1,...,en} of £ over I/ we define the matrix of the metric

by
hij(m) = (ei(m), e;(m))m.

t[ix1 and 18
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Because { Yom is an inner-product then (hij(m)) is a positive definite symmetric ma-
ecC ;

the local representative of the metric (,) with respect to th¢ locglojr?}m;j
Given si(m) = Z?zla,;(m)e,,-(m), sa(m) = Zizlﬁi(m)ei(m)s 51,82 € (U, ¢

we lhave

(s1(m), s2(m))m = <Z ay(m)e;(m), Z Bi(m)ei(m) >

= Zai(m)hij(m),@j(m) by linearity of (,)
ij

that is

mY, §2(m))m =51 )T hsz(£)(m) Slff):(al,...,an)
(s1(m), s2(m}) () s)fhsz( ) Szkf):(ﬁly'--yﬁn)'

1t may also be the case that the gauge group of the bundle is effectively a subgrotp
G of GL(n;R); more precisely, we say that the {structure or) gauge group can be

reduced to G if it possible to choose the local gauges

Vo 7 HUs) — Ua x B?
so that the fransition functions
gap(m)€ G C GL(n;R).

1 (R it i ible to find a
Equivalently, that means given Top + Ua D Usg — GL(n;R) it 1s poss
gauge transformation g € G(&) given locally by

o - UO’ _— GL(TL,ER)
with

—1
g{_«,g = GaGaplds

and gos € G. As an example, we note the

d
Proposition. If £ is orientable then the strncti_ﬂe group can z.lﬂways bcta .1'6(3)1;)(:(}
to SO(n) C GL(n;®). Such a reduction is equivalent to defining a metric .

(SO(n) = { A€ GL(n;R): ATA=1}) _

Definition. A metric on & is an assignement of an inner-produ;t {,)m ti eefuchctiorr?

&, = 7~ 1(m) such that for any open set U C M and sy, 50 € C™ (U, E) the fun
(51,52) U — R’

given by
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{s1,52)(m) = (s1(m), s2(m)}pm

is 0.

Because this is a new object in our bundle technology we must see how it transforms
under a local gauge transformation. I leave it as an exercise to show

h(fg) = g"h(f)g

where L(f) denotes the matrix of the metric with respect to the frame f.

Proof of Proposition. Suppose the structure group can be reduced to SO(n). Then
dag 1 Ua NUg — SO(n).

Over 7=} (U,) — U, with a local trivialization Yo : T HUys) — Uy x R™ define

({(m), ’?(m))m = (I/J(x (ﬁ(m))=¢0! (W("*)))Eucl. = I/Ja(ﬁ)’rdjﬂ(n)‘

where {, }guc. denotes the standard Euclidean metric on R™.

To see that is a good definition we must. show it does not. change over U, N Uz when
we change trivialization, ie for m € U, NUg we have

{E(m), n(m)m = (wp (E(m)), s (n(m)) ) g

as well. But 9, = go51Ps and so

(d’a (E(m)):% (T)(m))>Eucl. = <g“’3¢p (E(m))lguﬁd)ﬂ (n(m)))EuCL
= (9p(E(m)), ¥s (n(m)) >Eucl.
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by def? of SO(n). Hence (,} is well-defined.

Conversely, if £ has a metric then we may choose just those
Yo 17 N Uy) — Ug x B”

that take frames of 77 1(U,) orthonormal with respect to (,), to frames orthonormal
with respect to {,)gua. —this is always possible by the Gram-Schmidt process. That
means the transition function will map between frames o.n. for {,}ruq. and hence
they lie in O(n). Because £ is orientable they have positive determinant and hence

are in SG(n). O

In particular, if we cousider TM = £ then a metric on & is called a Riemannian
metric —and we now formally announce our arrival in the realm of differential geome-
try. Before discussing that more let us see some examples of vector bundles—.

T It will be useful to extend our definition of manifold to a slightly wider category.

Definition. A topological space M is a complex n-manifold if M is locally homeo-
morphic to €™ and the transition functions are holomorphic.

The essential motivation is that on a complex manifold one can talk about holo-
morphic functions f : M — C, just as on a C*-manifold one can talk abhout smooth
functions {or real-analytic functions).

Example. C" with a single chart (C™id).

Example. The 2-sphere S? with atlas consisting of 2-charts defined by stereographic
projection.

(More generally any compact 2-surface can be given the structure of a complex
manifold).

Example. Complex projective space and the complex Grassmanian. Complex pro-
Jective space is defined by

CP"™ = {one-dimensional (complex) subspaces of crty

- |
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EFOt,T]that.C.Pl =~ $?). So a point [{] E‘(CTJ:J"1 parameterizes a line in C"*! passing
‘1r: he origin. _W'e define an atlas on (Lx‘D in the following way. The topology on
CP” is the quotient space topology comming from the quotient map

T CH {0} — CPr = ¢ {o)/C

For z = (z9,...,2,) € C"*1\ {0} we let

m(z) = [20, ..., 2]
One thenr calls (zg, ..., z,) homogeneous coordinates of [20,...,2,] —Dbecause if z! =
Azi, A € Cthen (2f,...,2}) are also homogeneous coordinates. An atlas is deﬂned‘on

CP™ by n+ 1 charts

Ui:{wE(CP”:w:[zu,.,.,zn]an(lzi#()}
bl a)= (2 )

3 ’ s g
% oz "z

{Note independent of choice of homog. coords.). It is easy to see that ¢; is a
homeo'morphlsm and ¢;; = ¢; o ¢]_—1 is a diffeomorphism C» — 7.
An important generalization of complex projective space are the G

ifolds

rassmanian man-

LGrk(Cn) = {k-dimensional (coniplex) subspaces of C"ﬂ.

So, in particular, Gry(C"+!) = CP™. The manifold structure is defined in an analo-
gous way to CP".

Exercises.

(1) Prove that CP! = §? (analogous to RP! = Sh.
(2) Prove that CP—1 = §2n=1/1/(1).
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If M is a complex manifold then a vector function f : M — C" is said to be
holomorphic if each of the compositions

foqsi_l VicCm — (" M:(ﬁz(Ug)

are holomorphic, where Ay = { (U, ¢:) : i € A } is a complex atlas for M. We denote
the space of such functions by Tha{M;C?).

If M, N are complex manifolds with atlases Apr = {(Us, ¢:)} and Axy = {(Wj, z;)},
then a C° map f: M — N is said to be holomorphic if each of the composite maps
pis=m0fod, i C™ —C™:

Cm __+(3n

o T

7
M —— N

is holomorphic in the usual sense.

Definition. Let & —— M be a complex vector bundle where Af is a complex mani-
fold. Then if the transition functions

gij(m) . C" — C" ‘.«/):’gi_,' Uhint; — GL(n;C)

are holomorphic maps (and the projecf,ion 7 is a holomorphic map) then £ is said to
be a holomorphic vector bundle.
If #: £ — M is a holomorphic vector bundle then

Thot(M;€) = {hol. maps s : M — £ with 7o s =id}

is called the space of holomorphic sections of £. (If M is a compact manifold then by
generalized Riemann-Roch Theorem dim Tpoi(M; E) s finite.)

Exercise. Locally a holomorphic section of £ is given by holomorphic maps
f.,j : Ui — "

with f;(2) = gi;(2) fi{). Thus the idea is just as we introduce C'*°-real vector bundles
to talk about ‘twisted’ smooth functions, we introduce holomorphic bundles to talk
about ‘twisted’ holomorphic functions.

Examples of Vector Bundles.

(1). The trivial bundle £ — M given by &uiv = M x R™. Similarly one has the

trivial complex bundle E&v =M x C*. In this case
C®(M; Eiv) = CF (M, R") {m— {m} x {v})

7 (m)
C™=(M; L) = C(M,;C™).

If M is a complex manifold then

Tho(M; ES,) =2 Tha(M;C™).
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{2). The tangent bundle
If M is a C*™ manifold then we have seen explicitly that TM is a C* vector bundle
over M.

€™ is a complex manifold and has associated to each point z € C" {he holomorphic
tangent space (of complex dimension n)

1;C" = {holomorplic linear derivations}

So T C™ has the cancnlcal hasis

a 0 a
5713""’83”” Oz |

There is an obvious vector space isomorphism

(8 .0
8.1:2-_167&- :L_'

TEM =~ Ty, () C"

where TC A7 — {holomorphic linear derivations on M}, defined by a local chart (v,
¢;) around m € M. The space

T°M = | ) M
meM

Is called the holomorphic tangent bundle to M. The bundle structure arises in a
completely similar way to that of the real tangent bundle. Cleatly,

C™(M; TCM) = smooth complex vector fields on Af

and

Fhot{ M; TCM) = holomorphic vector fields on M

—locally of the form X(m) = > a;(m)sL) where o - IJ CM—C"are holomorphic

Az
functions and z; are local cocrdinates in I/,

Let £, £ be vector bundles over M with transition functions %ij _q,’-j. Then
(3) (Direct summ). £ ¢ & is a vector bundie over M with transition functions
(Vi) =wmed Cormm=so,
(4) (Tensor product). £® &’ is a vector bundle over Af with transition functions
9i; © gl
(5) (The dual bundle). £ is a v. bundle witl, transition functions (g:571).

Corollary. (Hom,, = Hom(&,,, £),) is a v. space of dim. n? fdim& = n = dim¢&’)
Hom(&, £') is a vector bundle hecause Hom(V, W)= V*@ W for v. spaces V and W,
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(6) Exterior bundle. /\’C £ 1s a vector bundle with transition functions g;; A- - Agij.

(7) Tautological bundle. We consider the complex Grassmanian Gr; (C™). This is
complex manifold and over Gr;(C™) there is a very natural complex vector .bundle
z — Gri(C") with fibre at [w] € G1,(C™) the subspace W C C™ parameterized by

that pomt. o o
The dual of the determinant bundle Det(£*) is a holomorphic line bundle over

Gri(C") and it is not hard to show that

k
(+4) Tho (Gri(C7); Det(£7)) = A (C?)".
(The determinant bundle Det(V) associated to a vector bundle 7 : V — M is the line

bundle whose fibre at n € M is ATV, = AT 7~1(m).) o i
Let us see that for the case k = 1, m = n4 1, ie for complex projective space CP™,

Notice in this case that Det(&*) = £*.
First observe any v € £ can be written
v=A(zg,...,2,) € C"F!
where (zo,...,2n) € R**'\ {0}, and the projection 7 : & — CP" is

m(v) = [z0,...,2,] € CP".

Suppose v € 771(U/,), then (Ua={[20,...,2,] €CP"™ : 2, #0Y)

: Pt
'U:)\a ﬁ,..., 1 =z )\a:)\z(r~
Lo M Zer

Define

Yo i Ua) — Uy x € i(0) = ([20,- .y 20], e )

I .
note this is unique

Then ¢; is a dilfeomorphism {CHECK!) and C-linear.
Suppose v € 771U, N 1/g), then we have

Yulv) = ([30, e 72n],)\a) Yp(v) = ({20, e ,Zn},/\ﬁ)~
But by definition

Ay = 22,
o Z/jﬁ

So we define transition function
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gap U NUp — GL(1;C) = C*

Za

gup ([2]) = =

25 Iz]:[zﬂﬂ-";zn]

Hence gqps([2]) is holomorphic and

Jag Iy Gva — identity Gae = identity.

Hence Det(£) = & and £ are holomorphic line bundles over CTP™. Let’s try
and deduce the sections. In fact, we can do this for the more general situation of
L™ — CP™ where £ = £* and m is an integer. Because holomorphic line bundles
are parameterized by the sheaf cohomology group H?*(CP™;C*) where C* is the sheaf
of non-zero holomorphic functions on C**! and because the Hodge descomposition
theorem identifies an isomorphism

Cy: H{CP™CY — 7
where C assigns to a line bundle its Chern class, then we may deduce that these
are all of the holomorphic line bundles over CP™, up to isomorphism (I realize I have

used some ideas here that have not been introduced in the text.)
To see what a section of £%™ is notice that such a section is equivalent to giv-

ing compatible holomorphic functions f, in each U,. Because the [z,... , Zn] are
homogeneous coordinates we require
(1) f.u(Azl)"')AZn):fa(zll"‘lzﬂ)‘
On the intersection U, N Uy we require
> m
@ o= s = (2) o
So f=:0f, = 23" fa 18 independent of the labels «, 3,.... Further, the homogeneity

condition {1) is replaced by
FOz1, . Az) = A f(o, o z).
Hence, since f is holomorplic, we deduce

space of homogeneous
- »olynomials of degree m . >0
Fhol((CPn;C@m) = } Y & "=
inzi,..., %n.
P m < 0.
Notice in particular that for m = 1, we have
I'het(CP™; L) = {space of linear forms on C}

which is precisely (x#) for the case k=1, m = p + 1.
Notice further one can hence calculate by purely combinatorial argnments that

' ’ +p-1
dim Ty (CPP; £87) = (m +p )
p
This can also be calculated topologically using the Riemann-Roch-Hirabruch theorem.
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3. DIFFERENTIAL FORMS, MAXWELL’S
EquaTions AND () + 1-DiMENsTONAL TQFT
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Let M be a C° manifold. Then a differential k-forin w on M is an element of

n k
Q (M) L (M \ T°M)

So at each m € M we have .
w(m) € /\ .M.
a2

1ot Fan,

near m and hence T, M has a dual hasis

[2F3%

T, M has a canonical basis {

{dml‘m: v vd"ﬂnlm}

defined by

=46

i

H .
([I,; (B?;)

T

So we may write

w(m) = Zf;d:{:;
I

I=(i,..., ), 1S <ig < <ip <

dey = dzi, A du;, Ao Adeg,

de;® =0
da; A de; = —duy Ndw;.

fr = fiyis i

The dx; satisfy {

So w({m) is a multilinear alternating map

wim): TpoyM®@ - @T,M —R

k
W (Up(1)s 5 Up(k)) = sgn(p)wm(ve, . -, k)
for p a permutation on k ‘letters’.
There is a canonical operator
d Q% (M) QM)
W — dw .

} rel. to local coordinates (x1, . ..

:mn)




48 SIMON SCOTT

defined locally by

dw = d (Z fIdJ:I) = de; ANdzp

Note f € C®(M) = Q°(M) so dfy € QY M) and locally

df; = E a5 dz;.
i=1 Oz

IfX € C®(M;TM), X = 5" ;52 then locally

az ;>

n

' af
PFX) =3 5 (Z “ 5)
7

i=]

n af .
= Z (tja—’—f—(lfffi (i)
Pl T du;

So
df(X) = X(f)

Examnple. M = R3.

QU(R7), (%), Q*(B?), 03(r?)

dim 1 dim 3 dim 3 dim 1
(Q*(B%) = (%) @ 02#)

0 —— 2°(®%) —, g g3

(1)
e
0 —— @) L grmy
. (3)
(1) On functions: df = ggdm + %dy + %gdz
(2) On 1-forms: d(fidz + fody + fadz)
— [93fs _ &
= (E)y —-d%l) dy Adz + (%% - %51) dz Adz
+ %% - %';—‘) de A dy

1dy Adz ~ fade Adz + fzdz A dy)

(3) On 2-forms: (f
— (%.%_1_2&_1_2:’—5-) der Ady A dz

dy dz
Hence
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d(0-forms) = gradient Vf
d(1-forins) = curl V x f F=(f,f2,f3)
d(2-forms) = divergence V - f —

The exterior derivate operator has the following properties:
fw = 2 frder (locally), wy = 3~ gsdry (locally)
(1) d{wi Awy) = dwi A wy + (—1)%8%1 5, A dwy (anti-derivation).
Locally: wy Awa = 5. frgsder Adey, (1) <= d(frgs) = dfr-gs+ f1-dgs.
(2y d*=0,ie d{dw) =0,w € QF(M).
Locally: (f € C=(M)), (2) <= ot (Flat connection!)

Jr ;0 EEFLES

For a € manifold M of dimn there is the de Rhamn complex

d

0 —— QUM) QY (M)

|

0 — (M) —— L ——

and hence the de Rham cohomology groups

H¥(M) = {closed k-forms}/{exact k-forms}
= Ker{d : QF — Q*+*1}/Im{d : Q¥~1 — QF}.

Thus H*(M) measures the failure of the de Rhain complex to be an exact sequence.
We say that '
o w € QF(M) s closed if dw = 0.
e w € QF(M)is exact if w = d7, some T € Q-1
H*(M) is a topological invariant of M.
In particular,

B k=0

0 k>0 (ie R™ has no topology).

H*(R™) = {

= w € QF(R") and dw = 0 then there exists: 7 € QF-YR"), dr = w. (ie T exists
globally)

Locally every manifold = R*. So given w € Qf(R") with dw = 0 = w = dr
some T € ¥~ 1(M) LocalLy (Poincar lemma). But in general 7 does not necessarily
exist globally — H¥(M) represents “obstruction” to global existence of 7.

An important topological invariant of M is its Euler number defined by x(M} =
ZZ=1(_l)k dim H*(M). In particular, when M = X, is a cownpact surface with g
holes then HO(%,) = R, HY(E,) = B, H*(Z,) = R so x(E,) = 229, which
agrees wiih the classical Euler number of a surface.
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3.1 Maxwell’s Equations.

V-B=0| (no magnetic charges)
VxE+ %‘? = 0| (Faraday law: a changing magnetic field pro-
duces an electric field)
V-E=p| (Gauss law)
VxB-— 9—? =j| (Ampere’s law—%?: a changing electric field
produces a magnetic field)

E = (E\, Ey, E3), B = (B, By, Bs)

electric field magnetic field

Define the Faraday 2-form F by:

1
F= _EFij de; Adzx;
= Fydey Adt + Eqdag Adt + Egdzs A dt

+ Bzdz; Adzy + Bidey A dzs + Bydes A dzy,

where (21, %y, 3, t) are canonical coords. on R*.
T4
As a matrix in basis dz; A dx;

0 Bs —-By E
-Bs 0 B, By
B, —-B, 0 Fj
-E, —-E, -E3 0

F =

And the *-form (defined by Minkowski metric)

xF = —%EJ’ # (dz; Adej)
= —Elflrg A (1:1’,'3 + E‘zd.’L‘l A (1.’(73 - Egd.’l?] A (11‘2
+ Bldl‘l Adi + Bz(l.’.f.’z A dt + B3(113 Adt.

*: QF(RY) - QE(RY
*(dz; Adz;) = ddeg Adr
(k1#6,5) # =+
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The Maxwell’s equations become

| dF =0 dxF= JJ J current density 3-form,

which is the abelian version of the Yang-Mills equations.
But we know H*(R?) = 0 and so there is A € Q'(R?*) with

Note we can change A by
A— A4 da, o € Q”(]R‘l)

*) F=dA [
where in coordinates

A= A;dx; (vector potential)

and (¥) =

F=(F;) F; a4; 94 (ie d(l—forrn))

- de;  Jxj = curl

Another way to express Maxwell’s equations is that the field strength (F) is the
curvature of a connection

Vi=—+4;

d The connection is only defined up to a
dr, U(1)-gauge (phase) transformation.

on a trivial complex line bundle L over R

R =L - - 1

3.2 Connections on Vector Bundles.

The theory of connections, or covariant derivates arise from following observation:
Consider a vector bundle 7 : £ — M. We may suppose that the dynamics of some
pliysical system aris as sections s : M — &, mwos = id. To calculate the “acceleration”
of s we must calculate its differential. That gives us a map

ds : TM — TE,
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and with respect to a ‘direction’ X € C°°(M,TM), we obtain a directional derivative
dys=ds(X): M — TE.

That is, the derivative of s in the direction X is a map

|dx 1 C™(M,£) — C™(M, T¢))

However, we expect the derivative of a section with respect to X to be a section (first

as the derivative of a function is a function —corresponding to £ = M x C). The
remedy is to .

s

f\ﬁ 1‘ TS
Py

—

=81y !
- TsEp

= 2
//

project dx s back into fibre.

Vxs=podxs p:TE —VE
VE=Kerdn
N et

Vertical bundle= sub-bundle of T&
of vectors tangent to the fibres #=1(M).

Let’s see what happens in the simplest case &, = M x R,

C™(M; i) = C (M, R™)

5—— f
s(m) = (m,f(m)).
First note that for manifolds M and N there is a natural isomorphism

T(Mx Ny = TM @ TN
(v —  dmr(v) @ rl‘n'N(v)),

where mps - M x N = M, 7y - M x N — N are the canonical projection maps.
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So for s € C™(M; &griv) one has
dxs € TE 5w = T(M x B™).
Define Vx by drn, odxs (ie P = dry,) so that
Vxys= (lﬁn(dxs) e TR"
= d(m, 0 5)(X) (Chain rule)
= df(X) s(m) = (m, f(m))
= X(f)

—-the usnal directional derivative.
Let 7 : M xR* — M, w = dr, —so0 w! € QYTEVE)

1
connection 1-forn

Horizontal sub-bundle
1

0 —— VE TE + ™ TM — 0
(=Kerdn,) ¢-- {(=Kerdn=TM)

A conneciion on £ is a splitting of this exact sequence —defined by w.
If we choose w # dr,,, then w and dr,, differ by an element of End(€). So

Vs =w(dxs) = X(f) +AC)Sf

VY =d+ A (At least locally).

Just as we characterised derivatives as linear derivations, we characterise covariant
derivatives (connections) as linear derivations on sections with image in space of
sections:

Definition. A covariant derivative is a map
Vx : C%(M;&) — C®(M;€) X eC®(M;TM)
such that

Vx(fs)(m) = dxf s(m)+ f(m)Vxs
=X
and

Vixs=fVxs,  Vx(s1+s2)=Vx(s1)+ Vxsa
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|
|

LocarLy

v
o =7 N U)=U x R”
and ¢ defines a ‘moving’ frame {e;, . .. y€n b

{e1(m), ..., eq(m)} basis for &,,.
So for s € c(U; SIU)
sm) = Y fim)e(m) iU — R,
i=1

So that Ve = 2_; Ujke; for some 1-forms 9, € QU(U). (We refer to 9y = (%) as
the connection matrix of V)

Vs=V (Z&Ei)
_—.Zd& ®e.¢+2&®Vei
= Ed& ®e; + ZE{ @ Ui5¢;

= E [d‘fi + Z ik
i k

We could write d; = 37, I}y dzx, locally. The symbols I, € C(U) are called
Christoffel symbols. In particular for a Riemannian manifold (M, g) there is a canoni-

_cal (}:lonstruction of the I'}; (Fundamental theorem of Riemannian geometry). Anyway
i the

@ei

{61,...,6,1} :(f)

frame we have
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‘st = (lff +9 = [d+0f](ff)J

The curvatnre of the connection is a bundle endomorphism given for any X,¥Y €

¢ (M;€) by

UX,Y)s={Vx,Vyls - Vixy)s [A Bl =AB—BA

Locally

QSf = ((l—}-’t?f)(d—}-l?f)sf
= [(l’l?f —+ ’tgf AT?f]Sf.

Globally,

Q € C%(M;End(£) © \ T"M) = 0*(M; End(£)).

(( ’m
|

l axy

To get a better idea of meaning of © consider effect of a gauge transformation
g € G(E) = C™(M; Aut &), given locally by maps

o Uy — G

Changes frame f = {e1,...,en} to

n n
fa= {Zﬂz‘lei:-'wzginen} = {6'1,---#3:;
=1 1=1

So have new local form for V given by

IVng = dfsg +Vpe€sg ! 5= Zf}yeg
1
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But v, defined by

Vei = Zi?]k(fg)e;

(1) = Zﬁjk(fg)mjei

i,J
also
(2) v (Zgi;‘ez‘) = ngijei + Zgijﬂri(f)er
1)=(2) =
99(fy) = dg + 9(f)g

or

(3) lﬂ(fy) = g7 dg + g7 9(f)g

More in_variantly the group G(&) of gauge transformations of £ act on the space of
connections 4 on £ by

GE)XA— A, (9,V)— g7V = ¢(V).

This means g(V)(s) = g1V (gs) for s € C*(M;&).
A similar calculation shows

(1) |24/9) = 570 pg]

Note if £ — M is a complex line bundie then with U(1)-gauge groups

ﬂ(fg) = 1y + 19(f)
d + 9(f) — d + ida + J( f)

g = ¢ g7 dg = ide for some real-valued function o : I/ — R1. Note also

SO

Q(f) = di(f)

. L L .
Now compare this with our earlier discussion of MAXWELL’s EQUATIONS to see (more
or less) why electromagnetism is U(1) gange theory.

Maybe then every connection is gauge equivalent to V = 4?7 Of couse... no.

Consider &, = M x R"™, then
dx f = X(f).
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— wT,)[
|
y
e
1( A T8 .
~—— e i
- .
e
o ~— 7 5!

So V : C®(M; Eriv) — C™(M; Eriv) gauge equivalent to d means that dg: M - R
such that V§ = ¢7'Vxg = X, so ([a,0] = ab — ba)

97 [Vx,Vylg = V% Vil={XY]= va,Y} =g7'VIX, Y]g.

So the gbstruction to gauge transforming V to the trivial connection d is measured
by
Vx,Vy] = Vixy) = Q(X,Y).

Example. Indim1, M = R! n = 1 (line bundie). A = space of unitary connections,

G(€) = gauge group, then the moduli space M “& A/G(E) is equal to a point (every
connection gauge equivalent to d). 'To see that, notice every line bundle over R is
trivial (why?) and hence a connection ¥ can be written globally as

d o d

V= pte@=g(@) g(x),  where g(z) = = /e
ar

Similarly, M = pt for any complex n-bundle & — R! with Hermitian metric.

Suppose M = IR™, then a connection V has components V; = 553— + A;{z) —the
question we must answer is does there exist ¢ with ¢¥;¢7 = a—i: ?

No, becarise of comnutator [V;,V;] = %—iii - g—f}_ﬂ [Ai, Aj] = Fij. (Note Vi, 0,1 =
0) So M is non-trivial.

One way to explain M = pt in dim 1 is by parallel transport. Let 7:R! — M be
™ curve

If 5 : R! — v*& smooth define V(_it))s(t) Lf V7 €(5)(t). The parallel transport map

¥

along v(t)

T.r(t) e HOlll(S.,(t), 5(:))

1s defined by the o.d.e.
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MO

N

I¥‘Jr’.} |

w1

T T TN
i’ e
M

£
vﬂ’f(t) "’T(t) =0 7 (0) =1
matrix

Then we have

(*) VEs(0) = lim w
t .

7 t—0
Exer' g . . Telt)e (0)—e;(i 3
cise. Show (), ie lim,_, Zx0e(0)=ci(®) L2 @ ~ E}l:n ?;:{0)e;(0).
Proposition. (r,, 7, — Tyy=1Ty,-1)5(0) = mz{vv. Vo 1s(0) =
o FR. PR
4029(71,72)s(0), with 7y, (8:)s(0) = s(t) +tV_ 5(0).
Yi
Proof. Exercise.
Th‘us we see curvature is the infinitesimal version of holonomy.
Let us consider the non-trivial I-manifold S! with (oriented) complex line bundle

£ (nf:cessamy trivial) with metric connection ¥ (ie parallel transport preserves the
metrie) and M = gauge equiv. classes of unitary connections:

Proposition. (Alranov-Bohm effect) M(S') = U(1). (More precisely: Géuge

equivalence classes of unitary connections on £ — S are parameterized by S1)

" More generally, for an (oriented) (trivial) cor v
. , ’ 11vial) comnplex n-l 1 wi
it Boners ) | n-bundle £ — §! with V¥

(X{s1,82) = (Vxs1,82) + (Sl)Vst)),

one has
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M(SL €)= U(n)

Equivalently, M(S'; £) is in 1-1 correspondence with self-adjoint boundary conditions
for Dirac-type operator

d
D=ivV= z(—;; + A(@) ([0, 27); Euiv) — C (0, 27]; Eueiv)

hermitian

(Eviv = S x C™) over [0, 2x], with respect to the inner-product

2T
{s1,52) = / 51(t)sa(t) di

0

A boundary condition for D means a subspace w C C* & C* = C?. That is,
w = wo $ wyy where wq, way are subspaces of the fibres of £ over the boundary

components. Thus the space of all boundary conditions is the full Grassmanian
Gr(C?) = Ui, G (C™).
That brings us to 0 + 1-dimensional topological quantum field theory (TQFT).

3.3 Geometric Quantization.
Let us very quickly first review HAMILTONIAN (CLASSICAL) MECHANICS.

Let M be a 2n-dimensional symplectic manifold. (M =phase space of classical
system).

M has 2-form w € Q4(M), dw = 0 and w™ # 0.

w™ £ 0 <= non-degenerate < w : TM — TM" is invertible with inverse
wlTM-TM, oo

w = wijdie; Ade;  locally

7] ad

-1 __ , if o
=i @,
Je; ~ Ox;j

o w”wjk = 6,;];

w relates classical observables f € C™ (M) to vector fields Xy € O (M, TM) by
Xp=w &) (o df = —ixw) e

This is a symplectic vector field, ie -

(*) Lx,w=10 (Lie derivative).

(There is a partial converse to (): Lxw =0 = iyw = df some f € C®(M) locally
since fy =iy od+ doix and dw = 0).

In local canonical coords. w = dp; A dij; and
af

df = ==dq; —

——dgq,.
ap: “

The flow of the vector field X is given by




6o SIMON SCOTT
i P 3 g\ | [
Gr (") < Ufln) I - 2 ‘
w-graph@g) <= g E ‘
o Tom

on_ 00 om0 ow's equat
T i e (Hamiilton’s equations).

flow p(t) = (P(f),CI(t))-

Quantization.
Ideally quantization of a classical mechanical system with symplectic phase (M,w)
)

woulfi be given by unitary Hilbert space representation of the Poisson Lie algebra of
classical obscrvables C™ (M), where the Poisson brachet, is defined by

{f,9} = w7 H{df, dg) = X, (),

SO one looks for a Hilbert spacc ‘H with algebra A of self adjoint cperators, and a
linear map ’

C®(M) — A
o f

such that {f,‘g} = ih[f, 3] and f const =—> £ multz operator.
If there exists complex /(1)-line bundle £ — M with connection V such that

then (M, w) is ‘pre-quantizable’ with

H=LYML) fr— f=~ihVx, +f

To get. a g{ocd quantization we need a polarization. Roughly this means restricting the
.quant}zatlon to those sections annihilated by half the derivatives on M. Equivalently
1t means modifying the map f — f to take account of the commutative assosiative;
algebra structure defined on C™ (M) by pointwise multiplication of functions, in adit-
tion to respecting the Poisson algebra structure. That is, we also require }'—; =f-g
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This restricts greatly the quantizable classical observables. If M is a Kahler man-
ifold there is a natural polarization given by restricting to those sections such that
vOls = (I 4iJ)Vs = 0, where J € C®(M;EndTM) is the complex structure on M

(J2=-1).

erol = Tha(M; L) ‘

Example. M =C*", L=M xC,w = %d:i Adz; = dp; ANdgi = i00K, where K is

Kahler potential.

1, = Hol(C*; C) with

(,9") = / emm Tl gy (dY = Q= w)

As an exercise, tlie reader might like to check that under the gauge transformation
g(z) = ¢ (K (2,2) = 330, |2:%) the holomorphic sections of c n?w take the
form ¥(z,%) = $(z)e” T L l2i* (where the ¢ are holomorphic functions in the usual
sense) with V potential ¥ = ~izdst 4+ §dK.

: : i g !
Harmonic oscillator h(z,2) = 3 ; i”le gnantizes to b = Yohzs 4+ 3,

. 3] Rl
hd= 1| h z 7 +§ .

1
‘creation operator’ ot ,
‘annihilation operator

We may use Kahler quantization to define a TQFT in dim'l as follows.

Take Lagrangian £(¢) = [ YDy dip, defined as a functional. L',' : 'Cm()(_'; -
R, when L, is a Hermitian n-bundle over [0,27] (necessarily trivial) with metric
connection V, and I} = iV 4« is the associated Dirac operator.

Define QFT over phase ;;ace Gr (C*) = |, Gri(C™) by the Feynman path inte-
gral

£8,) —

triv

Zx(w) = /cm(x-s . )CWLWMDMW’

where £, (%) = fX YD, Y(w).

Evaluated as a fermionic integral
Zx(w) ~ det Dy,

. . d R
Relative to a trivialization of £5,, = {0,2x] x C* we may write D = i + Alz) : .
c™ ([0, 27}, C*) — C=([0, 27},C").

But det D : Gr (C?*) —7 is not a function but a holomorphic section of a complex

line bundle over Gr (C**) with fibre

max
L. = Det(Ker D,)* @ Det(CoKer D.) (recall Det V = /\ V)
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Since D, is Fredhow, Ker D, and CoKer I}, are finite dimensional and so £, is wel]
defined. One finds
L = Det(£).

The tautological bundle over Gr (C?") we considered earlier. So because Gr (C*) is
a Kahler manifold and £ has a canonical connection ¥V with*

Q") = jw (w = Kaller forn)
then we can geometrically quantize. We obtain

H = Dha(Gr (C™), £7)*

o~ /\CZn — @/\k o
k

(Fock sPAcE)

—which is the fundamental irreducible representation of the group U(2n), (Note
Gri(C?) = U(2n)/U (k) x U(n—k).) And that, very roughly, is why 0+ 1-dimensional
topological quantum field theory is essentially equivalent to the representation theory
of the compact Lie groups, and hence to quantuin mechanics.

*See for example R. O. Wells, ‘Complex Mauifolds’ {Springer-Verlag) 61' P. Griffiths, J. Harris,
‘Frinciples of Algebraic Geametry' (Wiley).

TENSORES Y GEOMETRIiA DIFERENCIAL
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RESUMEN: Vamos a explotar todas las posibilidades de la diferencial de una funcién.
Con ella fabricaremos la base dual del espacio cotangente y su espacio tensorial. Por
dualidad, extenderemos nuestra presentacién, didactica, al espacio tangente y a sus
tensores.

1. INTRODUCCION

Se trata de dar una vision pedagogica de los espacios tensoriales con ayuda de
las diferenciales de las variables independientes. Este esquema pedagdgico permite ir
directamente al corazén de la geometria diferencial sin seguir ¢l proceso tradicional.
A nivel introductorio siempre se ha considerado que la diferencial dz se comporta
como algo “pequeno” y constante, a diferencia del incremento A que es variable y
tiewde a cero.

Vamos a considerar dz, dy, dz, ete, como funciones, mas exactamente, como formas
lineales o tensores covariantes de rango nno. La diferencial df de una funcién real de
variable real f, serda también una forma lineal o tensor. df serd una combinacién lineal
de las diferenciales da, dy, etc. Este aspecto algebraico nos conducird a los tensores.
No debe olvidarse que df es la aproximacion lineal de la funcién f la cual es, en general,
no lineal. Segin esta visién, se reemplaza un pedacito de la curva representativa de f
(o de su superficie representativa, cuando se tienen varias variables) por un pedacito
de linea recta.

Esto quiere decir gque localmente f se comporta como una recta, la linea recta
tangente (o el plano tangente en el caso de una superficie).

Al referirnos a las propiedades locales de curvas y superficies, estamos tocando las
propiedades que justamente estudia la geometria diferencial en su aspecto cldsico.

Las otras propiedades: curvatura, torsién, triedro mévil, conexién, etc, no las
tornaremos en consideracién. Sélo nos contentareinos con explorar la tangente a una
curva, el plano tangente o el espacio tangente a una variedad, en general. Ademas, lo
(ue nos interesa es el aspecto algebraico, la estructura analitica la dejaremos de lado.

Primner Encuentro de Geometria Diferencial en Fisica.
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